pmc.ncbi.nlm.nih.gov

Localization of the binding site of tissue-type plasminogen activator to fibrin

Abstract

Functionally active A and B chains were separated from a two-chain form of recombinant tissue-type plasminogen activator after mild reduction and alkylation. The A chain was found to be responsible for the binding to lysine-Sepharose or fibrin and the B chain contained the catalytic activity of tissue-type plasminogen activator. An extensive reduction of two-chain tissue-type plasminogen activator, however, destroyed both the binding and catalytic activities. A thermolytic fragment, Fr. 1, of tissue-type plasminogen activator that contained a growth factor and two kringle segments retained its lysine binding activity. Additional thermolytic cleavages in the kringle-2 segment of Fr. 1 caused a total loss of the binding activity. These results indicated that the binding site of tissue-type plasminogen activator to fibrin was located in the kringle-2 segment.

163

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. A., Pepper D. S. Isolation and properties of human vascular plasminogen activator. Thromb Haemost. 1981 Feb 23;45(1):43–50. [PubMed] [Google Scholar]
  2. Andreasen P. A., Nielsen L. S., Grøndahl-Hansen J., Skriver L., Zeuthen J., Stephens R. W., Danø K. Inactive proenzyme to tissue-type plasminogen activator from human melanoma cells, identified after affinity purification with a monoclonal antibody. EMBO J. 1984 Jan;3(1):51–56. doi: 10.1002/j.1460-2075.1984.tb01760.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aoki N., Moroi M., Tachiya K. Effects of alpha2-plasmin inhibitor on fibrin clot lysis. Its comparison with alpha2-macroglobulin. Thromb Haemost. 1978 Feb 28;39(1):22–31. [PubMed] [Google Scholar]
  4. Aoki N., Sakata Y., Ichinose A. Fibrin-associated plasminogen activation in alpha 2-plasmin inhibitor deficiency. Blood. 1983 Nov;62(5):1118–1122. [PubMed] [Google Scholar]
  5. Aoki N., Sakata Y., Matsuda M., Tateno K. Fibrinolytic states in a patient with congenital deficiency of alpha 2-plasmin inhibitor. Blood. 1980 Mar;55(3):483–488. [PubMed] [Google Scholar]
  6. Deutsch D. G., Mertz E. T. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095–1096. doi: 10.1126/science.170.3962.1095. [DOI] [PubMed] [Google Scholar]
  7. Günzler W. A., Steffens G. J., Otting F., Kim S. M., Frankus E., Flohé L. The primary structure of high molecular mass urokinase from human urine. The complete amino acid sequence of the A chain. Hoppe Seylers Z Physiol Chem. 1982 Oct;363(10):1155–1165. doi: 10.1515/bchm2.1982.363.2.1155. [DOI] [PubMed] [Google Scholar]
  8. Hoylaerts M., Rijken D. C., Lijnen H. R., Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem. 1982 Mar 25;257(6):2912–2919. [PubMed] [Google Scholar]
  9. Ichinose A., Kisiel W., Fujikawa K. Proteolytic activation of tissue plasminogen activator by plasma and tissue enzymes. FEBS Lett. 1984 Oct 1;175(2):412–418. doi: 10.1016/0014-5793(84)80779-6. [DOI] [PubMed] [Google Scholar]
  10. Kasai S., Arimura H., Nishida M., Suyama T. Proteolytic cleavage of single-chain pro-urokinase induces conformational change which follows activation of the zymogen and reduction of its high affinity for fibrin. J Biol Chem. 1985 Oct 5;260(22):12377–12381. [PubMed] [Google Scholar]
  11. Kristensen P., Larsson L. I., Nielsen L. S., Grøndahl-Hansen J., Andreasen P. A., Danø K. Human endothelial cells contain one type of plasminogen activator. FEBS Lett. 1984 Mar 12;168(1):33–37. doi: 10.1016/0014-5793(84)80201-x. [DOI] [PubMed] [Google Scholar]
  12. Lerch P. G., Rickli E. E., Lergier W., Gillessen D. Localization of individual lysine-binding regions in human plasminogen and investigations on their complex-forming properties. Eur J Biochem. 1980;107(1):7–13. doi: 10.1111/j.1432-1033.1980.tb04617.x. [DOI] [PubMed] [Google Scholar]
  13. Ljungnér H., Holmberg L., Kjeldgaard A., Nilsson I. M., Astedt B. Immunological characterisation of plasminogen activators in the human vessel wall. J Clin Pathol. 1983 Sep;36(9):1046–1049. doi: 10.1136/jcp.36.9.1046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McMullen B. A., Fujikawa K. Amino acid sequence of the heavy chain of human alpha-factor XIIa (activated Hageman factor). J Biol Chem. 1985 May 10;260(9):5328–5341. [PubMed] [Google Scholar]
  15. Ny T., Elgh F., Lund B. The structure of the human tissue-type plasminogen activator gene: correlation of intron and exon structures to functional and structural domains. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5355–5359. doi: 10.1073/pnas.81.17.5355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pennica D., Holmes W. E., Kohr W. J., Harkins R. N., Vehar G. A., Ward C. A., Bennett W. F., Yelverton E., Seeburg P. H., Heyneker H. L. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature. 1983 Jan 20;301(5897):214–221. doi: 10.1038/301214a0. [DOI] [PubMed] [Google Scholar]
  17. Pohl G., Källström M., Bergsdorf N., Wallén P., Jörnvall H. Tissue plasminogen activator: peptide analyses confirm an indirectly derived amino acid sequence, identify the active site serine residue, establish glycosylation sites, and localize variant differences. Biochemistry. 1984 Jul 31;23(16):3701–3707. doi: 10.1021/bi00311a020. [DOI] [PubMed] [Google Scholar]
  18. Rabiner S. F., Goldfine I. D., Hart A., Summaria L., Robbins K. C. Radioimmunoassay of human plasminogen and plasmin. J Lab Clin Med. 1969 Aug;74(2):265–273. [PubMed] [Google Scholar]
  19. Rickli E. E., Otavsky W. I. A new method of isolation and some properties of the heavy chain of human plasmin. Eur J Biochem. 1975 Nov 15;59(2):441–447. doi: 10.1111/j.1432-1033.1975.tb02472.x. [DOI] [PubMed] [Google Scholar]
  20. Rijken D. C., Collen D. Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture. J Biol Chem. 1981 Jul 10;256(13):7035–7041. [PubMed] [Google Scholar]
  21. Rijken D. C., Hoylaerts M., Collen D. Fibrinolytic properties of one-chain and two-chain human extrinsic (tissue-type) plasminogen activator. J Biol Chem. 1982 Mar 25;257(6):2920–2925. [PubMed] [Google Scholar]
  22. Rijken D. C., Juhan-Vague I., de Cock F., Collen D. Measurement of human tissue-type plasminogen activator by a two-site immunoradiometric assay. J Lab Clin Med. 1983 Feb;101(2):274–284. [PubMed] [Google Scholar]
  23. Rijken D. C., Wijngaards G., Welbergen J. Relationship between tissue plasminogen activator and the activators in blood and vascular wall. Thromb Res. 1980 Jun 15;18(6):815–830. doi: 10.1016/0049-3848(80)90204-2. [DOI] [PubMed] [Google Scholar]
  24. Robbins K. C., Summaria L., Hsieh B., Shah R. J. The peptide chains of human plasmin. Mechanism of activation of human plasminogen to plasmin. J Biol Chem. 1967 May 25;242(10):2333–2342. [PubMed] [Google Scholar]
  25. Rånby M. Studies on the kinetics of plasminogen activation by tissue plasminogen activator. Biochim Biophys Acta. 1982 Jun 24;704(3):461–469. doi: 10.1016/0167-4838(82)90068-1. [DOI] [PubMed] [Google Scholar]
  26. Sumi H., Robbins K. C. A functionally active heavy chain derived from human high molecular weight urokinase. J Biol Chem. 1983 Jul 10;258(13):8014–8019. [PubMed] [Google Scholar]
  27. Thorsen S., Clemmensen I., Sottrup-Jensen L., Magnusson S. Adsorption to fibrin of native fragments of known primary structure from human plasminogen. Biochim Biophys Acta. 1981 May 29;668(3):377–387. doi: 10.1016/0005-2795(81)90171-9. [DOI] [PubMed] [Google Scholar]
  28. Thorsen S. Differences in the binding to fibrin of native plasminogen and plasminogen modified by proteolytic degradation. Influence of omega-aminocarboxylic acids. Biochim Biophys Acta. 1975 May 30;393(1):55–65. doi: 10.1016/0005-2795(75)90216-0. [DOI] [PubMed] [Google Scholar]
  29. Thorsen S., Glas-Greenwalt P., Astrup T. Differences in the binding to fibrin of urokinase and tissue plasminogen activator. Thromb Diath Haemorrh. 1972 Aug 31;28(1):65–74. [PubMed] [Google Scholar]
  30. Váli Z., Patthy L. The fibrin-binding site of human plasminogen. Arginines 32 and 34 are essential for fibrin affinity of the kringle 1 domain. J Biol Chem. 1984 Nov 25;259(22):13690–13694. [PubMed] [Google Scholar]
  31. Wallén P., Bergsdorf N., Rånby M. Purification and identification of two structural variants of porcine tissue plasminogen activator by affinity adsorption on fibrin. Biochim Biophys Acta. 1982 Nov 24;719(2):318–328. doi: 10.1016/0304-4165(82)90105-2. [DOI] [PubMed] [Google Scholar]
  32. Wiman B., Wallén P. The specific interaction between plasminogen and fibrin. A physiological role of the lysine binding site in plasminogen. Thromb Res. 1977 Feb;10(2):213–222. doi: 10.1016/0049-3848(77)90003-2. [DOI] [PubMed] [Google Scholar]
  33. van der Graaf F., Greengard J. S., Bouma B. N., Kerbiriou D. M., Griffin J. H. Isolation and functional characterization of the active light chain of activated human blood coagulation factor XI. J Biol Chem. 1983 Aug 25;258(16):9669–9675. [PubMed] [Google Scholar]
  34. van der Graaf F., Tans G., Bouma B. N., Griffin J. H. Isolation and functional properties of the heavy and light chains of human plasma kallikrein. J Biol Chem. 1982 Dec 10;257(23):14300–14305. [PubMed] [Google Scholar]