Control of antibiotic biosynthesis

Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aharonowitz Y., Demain A. L. Carbon catabolite regulation of cephalosporin production in Streptomyces clavuligerus. Antimicrob Agents Chemother. 1978 Aug;14(2):159–164. doi: 10.1128/aac.14.2.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aharonowitz Y., Demain A. L. Nitrogen nutrition and regulation of cephalosporin production in Streptomyces clavuligerus. Can J Microbiol. 1979 Jan;25(1):61–67. doi: 10.1139/m79-010. [DOI] [PubMed] [Google Scholar]
- Atkinson D. E., Walton G. M. Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. J Biol Chem. 1967 Jul 10;242(13):3239–3241. [PubMed] [Google Scholar]
- Audhya T. K., Russell D. W. Enniatin production by Fusarium sambucinum: primary, secondary, and unitary metabolism. J Gen Microbiol. 1975 Feb;86(2):327–332. doi: 10.1099/00221287-86-2-327. [DOI] [PubMed] [Google Scholar]
- BANERJEE A. B., BOSE S. K. BIOSYNTHESIS OF MYCOBACILLIN, A NEW ANTIFUNGAL PEPTIDE. I. ROLE OF NUCLEIC ACID. J Bacteriol. 1964 Jun;87:1397–1401. doi: 10.1128/jb.87.6.1397-1401.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BENEDICT R. G., LINDENFELSER L. A., STODOLA F. H., TRAUFLER D. H. Studies on Streptomyces griseocarneus and the production of hydroxystreptomycin. J Bacteriol. 1951 Oct;62(4):487–497. doi: 10.1128/jb.62.4.487-497.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BERNLOHR R. W., NOVELLI G. D. BACITRACIN BIOSYNTHESIS AND SPORE FORMATION: THE PHYSIOLOGICAL ROLE OF AN ANTIBIOTIC. Arch Biochem Biophys. 1963 Oct;103:94–104. doi: 10.1016/0003-9861(63)90014-6. [DOI] [PubMed] [Google Scholar]
- BU'LOCK J. D. Intermediary metabolism and antibiotic synthesis. Adv Appl Microbiol. 1961;3:293–342. doi: 10.1016/s0065-2164(08)70514-8. [DOI] [PubMed] [Google Scholar]
- Ball W. J., Jr, Atkinson D. E. Adenylate energy charge in Saccharomyces cerevisiae during starvation. J Bacteriol. 1975 Mar;121(3):975–982. doi: 10.1128/jb.121.3.975-982.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bandyopadhyay S. K., Majumdar S. K. Regulation of the formation of alkaline phosphatase during neomycin biosynthesis. Antimicrob Agents Chemother. 1974 Apr;5(4):431–434. doi: 10.1128/aac.5.4.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Basak K., Majumdar S. K. Utilization of carbon and nitrogen sources by Streptomyces kanamyceticus for kanamycin production. Antimicrob Agents Chemother. 1973 Jul;4(1):6–10. doi: 10.1128/aac.4.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumauerová M., Matejů J., Stajner K., Vanek Z. Studies on the production of daunomycinone-derived glycosides and related metabolites in Streptomyces coeruleorubidus and Streptomyces peucetius. Folia Microbiol (Praha) 1977;22(4):275–285. doi: 10.1007/BF02877657. [DOI] [PubMed] [Google Scholar]
- Bu'Lock J. D., Hamilton D., Hulme M. A., Powell A. J., Smalley H. M., Shepherd D., Smith G. N. Metabolic development and secondary biosynthesis in Penicillium urticae. Can J Microbiol. 1965 Oct;11(5):765–778. doi: 10.1139/m65-104. [DOI] [PubMed] [Google Scholar]
- Bérdy J. Recent developments of antibiotic research and classification of antibiotics according to chemical structure. Adv Appl Microbiol. 1974;18(0):309–406. [PubMed] [Google Scholar]
- Chapman A. G., Fall L., Atkinson D. E. Adenylate energy charge in Escherichia coli during growth and starvation. J Bacteriol. 1971 Dec;108(3):1072–1086. doi: 10.1128/jb.108.3.1072-1086.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costa Plá L. Streptomycin biosynthesis. I. Existence of two amidinotransferase activities in Streptomyces griseus. Biochim Biophys Acta. 1971 Sep 22;242(3):541–548. doi: 10.1016/0005-2744(71)90147-1. [DOI] [PubMed] [Google Scholar]
- D'Amato R. F., Pisano M. A. A chemically defined medium for cephalosporin C production by Paecilomyces persicinus. Antonie Van Leeuwenhoek. 1976;42(3):299–308. doi: 10.1007/BF00394127. [DOI] [PubMed] [Google Scholar]
- DEMAIN A. L., NEWKIRK J. F., HENDLIN D. Effect of methionine, norleucine, and lysine derivatives on cephalosporin C formation in chemically defined media. J Bacteriol. 1963 Feb;85:339–344. doi: 10.1128/jb.85.2.339-344.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEMAIN A. L. SYNTHESIS OF CEPHALOSPORIN C BY RESTING CELLS OF CEPHALOSPORIUM SP. Clin Med (Northfield) 1963 Nov;70:2045–2051. [PubMed] [Google Scholar]
- Demain A. L. How do antibiotic-producing microorganisms avoid suicide? Ann N Y Acad Sci. 1974 May 10;235(0):601–612. doi: 10.1111/j.1749-6632.1974.tb43294.x. [DOI] [PubMed] [Google Scholar]
- Demain A. L., Inamine E. Biochemistry and regulation of streptomycin and mannosidostreptomycinase (alpha-D-mannosidase) formation. Bacteriol Rev. 1970 Mar;34(1):1–19. doi: 10.1128/br.34.1.1-19.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Demain A. L., Masurekar P. S. Lysine inhibition of in vivo homocitrate synthesis in Penicillium chrysogenum. J Gen Microbiol. 1974 May;82(1):143–151. doi: 10.1099/00221287-82-1-143. [DOI] [PubMed] [Google Scholar]
- Demain A. L. Mutation and the production of secondary metabolites. Adv Appl Microbiol. 1973;16:177–202. doi: 10.1016/s0065-2164(08)70027-3. [DOI] [PubMed] [Google Scholar]
- Deshpande V. N. Biosynthesis of chlortetracycline. II. Carbohydrate metabolism by the resting cells of Streptomyces aureofaciens in relation to the biosynthesis of chlortetracycline. Hindustan Antibiot Bull. 1968 Nov;11(2):106–112. [PubMed] [Google Scholar]
- Drew S. W., Demain A. L. Effect of primary metabolites on secondary metabolism. Annu Rev Microbiol. 1977;31:343–356. doi: 10.1146/annurev.mi.31.100177.002015. [DOI] [PubMed] [Google Scholar]
- Drew S. W., Demain A. L. Production of cephalosporin C by single and double sulfur auxotrophic mutants of Cephalosporium acremonium. Antimicrob Agents Chemother. 1975 Jul;8(1):5–10. doi: 10.1128/aac.8.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drew S. W., Demain A. L. Stimulation of cephalosporin production by methionine peptides in a mutant blocked in reverse transsulfuration. J Antibiot (Tokyo) 1975 Nov;28(11):889–895. doi: 10.7164/antibiotics.28.889. [DOI] [PubMed] [Google Scholar]
- Dubois E., Grenson M., Wiame J. M. The participation of the anabolic glutamate dehydrogenase in the nitrogen catabolite repression of arginase in Saccharomyces cerevisiae. Eur J Biochem. 1974 Oct 2;48(2):603–616. doi: 10.1111/j.1432-1033.1974.tb03803.x. [DOI] [PubMed] [Google Scholar]
- Dulaney E. L., Dulaney D. D. Mutant populations of Streptomyces viridifaciens. Trans N Y Acad Sci. 1967 Apr;29(6):782–799. doi: 10.1111/j.2164-0947.1967.tb02301.x. [DOI] [PubMed] [Google Scholar]
- Dulaney E. L. Observations on Streptomyces griseus: II. Nitrogen Sources for Growth and Streptomycin Production. J Bacteriol. 1948 Sep;56(3):305–313. [PMC free article] [PubMed] [Google Scholar]
- Egorov N. S., Toropova E. G., Suchkova L. A. Vliianie fosfornogo obmena u Proactinomyces fructiferi var. ristomycini na biosintez antibiotika ristomitsina. Mikrobiologiia. 1971 May-Jun;40(3):475–480. [PubMed] [Google Scholar]
- Elander R. P., Mabe J. A., Hamill R. L., Gorman M. Biosynthesis of pyrrolnitrins by analogue-resistant mutants of Pseudomonas fluorescens. Folia Microbiol (Praha) 1971;16(3):156–165. doi: 10.1007/BF02884206. [DOI] [PubMed] [Google Scholar]
- Elstner E. F., Suhadolnik R. J. Guanosine triphosphate-8-formylhydrolase. Methods Enzymol. 1975;43:515–520. doi: 10.1016/0076-6879(75)43113-5. [DOI] [PubMed] [Google Scholar]
- Elstner E. F., Suhadolnik R. J. The biosynthesis of the nucleoside antibiotics. IX. Purification and properties of guanosine triphosphate 8-formylhydrolase that catalyzes production of formic acid from the ureido carbon of guanosine triphosphate. J Biol Chem. 1971 Nov 25;246(22):6973–6981. [PubMed] [Google Scholar]
- Friebel T. E., Demain A. L. Oxygen-dependent inactivation of gramicidin S synthetase in Bacillus brevis. J Bacteriol. 1977 Jun;130(3):1010–1016. doi: 10.1128/jb.130.3.1010-1016.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedrich C. G., Demain A. L. Homocitrate synthase as the crucial site of the lysine effect on penicillin biosynthesis. J Antibiot (Tokyo) 1977 Sep;30(9):760–761. doi: 10.7164/antibiotics.30.760. [DOI] [PubMed] [Google Scholar]
- Froyshov O. Bacitracin biosynthesis by three complementary fractions from Bacillus licheniformis. FEBS Lett. 1974 Aug 15;44(1):75–78. doi: 10.1016/0014-5793(74)80309-1. [DOI] [PubMed] [Google Scholar]
- Froyshov O., Laland S. G. On the biosynthesis of bacitracin by a soluble enzyme complex from Bacillus licheniformis. Eur J Biochem. 1974 Jul 15;46(2):235–242. doi: 10.1111/j.1432-1033.1974.tb03616.x. [DOI] [PubMed] [Google Scholar]
- Froyshov O. The production of bacitracin synthetase by Bacillus licheniformis ATCC 10716. FEBS Lett. 1977 Sep 15;81(2):315–318. doi: 10.1016/0014-5793(77)80543-7. [DOI] [PubMed] [Google Scholar]
- Fujikawa K., Suzuki T., Kurahashi K. Biosynthesis of tyrocidine by a cell-free enzyme system of Bacillus brevis ATCC 8185. I. Preparation of partially purified enzyme system and its properties. Biochim Biophys Acta. 1968 Jun 18;161(1):232–246. doi: 10.1016/0005-2787(68)90313-4. [DOI] [PubMed] [Google Scholar]
- Fynn G. H., Davison J. A. Adenine nucleotide pool and energy charge during growth of a tyrothricin-producing strain of Bacillus brevis. J Gen Microbiol. 1976 May;94(1):68–74. doi: 10.1099/00221287-94-1-68. [DOI] [PubMed] [Google Scholar]
- Gallo M., Katz E. Regulation of secondary metabolite biosynthesis: catabolite repression of phenoxazinone synthase and actinomycin formation by glucose. J Bacteriol. 1972 Feb;109(2):659–667. doi: 10.1128/jb.109.2.659-667.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gersch D., Skurk A., Römer W. Phosphate inhibition of secondary metabolism in Streptomyces hygroscopicus and its reversal by cyclic AMP. Arch Microbiol. 1979 Apr;121(1):91–96. doi: 10.1007/BF00409210. [DOI] [PubMed] [Google Scholar]
- Ginther C. L. Sporulation and the production of serine protease and cephamycin C by Streptomyces lactamdurans. Antimicrob Agents Chemother. 1979 Apr;15(4):522–526. doi: 10.1128/aac.15.4.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Godfrey O. W. Isolation of regulatory mutants of the aspartic and pyruvic acid families and their effect on antibiotic production in Streptomyces lipmanii. Antimicrob Agents Chemother. 1973 Aug;4(2):73–79. doi: 10.1128/aac.4.2.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordee E. Z., Day L. E. Effect of exogenous penicillin on penicillin biosynthesis. Antimicrob Agents Chemother. 1972 Apr;1(4):315–322. doi: 10.1128/aac.1.4.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gottlieb D. The production and role of antibiotics in soil. J Antibiot (Tokyo) 1976 Oct;29(10):987–1000. doi: 10.7164/antibiotics.29.987. [DOI] [PubMed] [Google Scholar]
- Goulden S. A., Chattaway F. W. End-product control of acetohydroxyacid synthetase by valine in Penicillium chrysogenum Q 176 and a high penicillin-yielding mutant. J Gen Microbiol. 1969 Nov;59(1):111–118. doi: 10.1099/00221287-59-1-111. [DOI] [PubMed] [Google Scholar]
- Goulden S. A., Chattaway F. W. Lysine control of alpha-aminoadipate and penicillin synthesis in Penicillium chrysogenum. Biochem J. 1968 Dec;110(4):55P–56P. doi: 10.1042/bj1100055p. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gräfe U., Bocker H., Reinhardt G., Thrum H. Regulative beeinflussung der Nourseothricinbiosynthese durch o-Aminobenzoesäure in Kulturen des Streptomyces noursei JA 3890b. Z Allg Mikrobiol. 1974;14(8):659–673. doi: 10.1002/jobm.3630140804. [DOI] [PubMed] [Google Scholar]
- Gräfe U., Bocker H., Reinhardt G., Tkocz H., Thrum H. Alanin-Dehydrogenaseaktivität und Antibioticumbildung in Kulturen des Streptomyces hygroscopicus JA 6599. Z Allg Mikrobiol. 1974;14(3):181–192. doi: 10.1002/jobm.3630140302. [DOI] [PubMed] [Google Scholar]
- Gräfe U., Bocker H., Thrum H. Regulative influence of o-aminobenzoic acid on the biosynthesis of nourseothricin in cultures of Streptomyces noursei JA 3890b. II. Regulation of glutamine synthetase and the role of the glutamine synthetase/glutamate synthase pathway. Z Allg Mikrobiol. 1977;17(3):201–209. doi: 10.1002/jobm.3630170305. [DOI] [PubMed] [Google Scholar]
- HENDLIN D. The nutritional requirements of a bacitracin-producing strain of Bacillus subtilis. Arch Biochem. 1949 Dec;24(2):435–446. [PubMed] [Google Scholar]
- HOEKSEMA H., SMITH C. G. Novobiocin. Prog Ind Microbiol. 1961;3:91–139. [PubMed] [Google Scholar]
- HOSTALEK Z. RELATIONSHIP BETWEEN THE CARBOHYDRATE METABOLISM OF STREPTOMYCES AUREOFACIENS AND THE BIOSYNTHESIS OF CHLORTETRACYCLINE. I. THE EFFECT OF INTERRUPTED AERATION, INORGANIC PHOSPHATE AND BENZYL THIOCYANATE ON CHLORTETRACYCLINE BIOSYNTHESIS. Folia Microbiol (Praha) 1964 Mar;18:78–88. doi: 10.1007/BF02868788. [DOI] [PubMed] [Google Scholar]
- HOSTALEK Z. RELATIONSHIP BETWEEN THE CARBOHYDRATE METABOLISM OF STREPTOMYCES AUREOFACIENS AND THE BIOSYNTHESIS OF CHLORTETRACYCLINE. II. THE EFFECT OF BENZYL THIOCYANATE ON THE RESPIRATION OF WASHED MYCELIUM OF STREPTOMYCES AUREOFACIENS. Folia Microbiol (Praha) 1964 Mar;18:89–95. doi: 10.1007/BF02868789. [DOI] [PubMed] [Google Scholar]
- HOSTALEK Z. RELATIONSHIP BETWEEN THE CARBOHYDRATE METABOLISM OF STREPTOMYCES AUREOFACIENS AND THE BIOSYNTHESIS OF CHYLORTETRACYCLINE.. III. THE EFFECT OF BENZYL THIOCYANATE ON CARBOHYDRATE METABOLISM OF STREPTOMYCES AUREOFACIENS. Folia Microbiol (Praha) 1964 Mar;18:96–102. doi: 10.1007/BF02868790. [DOI] [PubMed] [Google Scholar]
- Haavik H. I. Studies on the formation of bacitracin by Bacillus licheniformis: effect of glucose. J Gen Microbiol. 1974 Apr;81(2):383–390. doi: 10.1099/00221287-81-2-383. [DOI] [PubMed] [Google Scholar]
- Haavik H. I. Studies on the formation of bacitracin by Bacillus licheniformis: role of catabolite repression and organic acids. J Gen Microbiol. 1974 Oct;84(2):321–326. doi: 10.1099/00221287-84-2-321. [DOI] [PubMed] [Google Scholar]
- Hinnen A., Nüesch J. Enzymatic hydrolysis of cephalosporin C by an extracellular acetylhydrolase of Cephalosporium acremonium. Antimicrob Agents Chemother. 1976 May;9(5):824–830. doi: 10.1128/aac.9.5.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hitchcock M. J., Katz E. Actinomycin biosynthesis by protoplasts derived from Streptomyces parvulus. Antimicrob Agents Chemother. 1978 Jan;13(1):104–114. doi: 10.1128/aac.13.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodgson B. Possible roles for antibiotics and other biologically active peptides at specific stages during sporulation of Bacillaceae. J Theor Biol. 1971 Jan;30(1):111–119. doi: 10.1016/0022-5193(71)90040-3. [DOI] [PubMed] [Google Scholar]
- Hopwood D. A. Extrachromosomally determined antibiotic production. Annu Rev Microbiol. 1978;32:373–392. doi: 10.1146/annurev.mi.32.100178.002105. [DOI] [PubMed] [Google Scholar]
- Hopwood D. A., Merrick M. J. Genetics of antibiotic production. Bacteriol Rev. 1977 Sep;41(3):595–635. doi: 10.1128/br.41.3.595-635.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howells J. D., Anderson L. E., Coffey G. L., Senos G. D., Underhill M. A., Vogler D. L., Ehrlich J. Butirosin, a new aminoglycosidic antibiotic complex: bacterial origin and some microbiological studies. Antimicrob Agents Chemother. 1972 Aug;2(2):79–83. doi: 10.1128/aac.2.2.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurley L. H., Bialek D. Regulation of antibiotic production: catabolite inhibition and the dualistic effect of glucose on indolmycin production. J Antibiot (Tokyo) 1974 Jan;27(1):49–56. doi: 10.7164/antibiotics.27.49. [DOI] [PubMed] [Google Scholar]
- Hutchison K. W., Hanson R. S. Adenine nucleotide changes associated with the initiation of sporulation in Bacillus subtilis. J Bacteriol. 1974 Jul;119(1):70–75. doi: 10.1128/jb.119.1.70-75.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janglová Z., Suchý J., Vanek Z. Regulation of biosynthesis of secondary metabolites. VII. Intracellular adenosine-5'-triphosphate concentration in Streptomyces aureofaciens. Folia Microbiol (Praha) 1969;14(3):208–210. doi: 10.1007/BF02872780. [DOI] [PubMed] [Google Scholar]
- Jones A., Vining L. C. Biosynthesis of chloramphenicol in Streptomyces sp. 3022a. Identification of p-amino-L-phenylalanine as a product from the action of arylamine synthetase on chorismic acid. Can J Microbiol. 1976 Feb;22(2):237–244. doi: 10.1139/m76-032. [DOI] [PubMed] [Google Scholar]
- Jones A., Westlake D. W. Regulation of chloramphenicol synthesis in Streptomyces sp. 3022a. Properties of arylamine synthetase, an enzyme involved in antibiotic biosynthesis. Can J Microbiol. 1974 Nov;20(11):1599–1611. doi: 10.1139/m74-247. [DOI] [PubMed] [Google Scholar]
- Jones G. H. Ribonucleic acid synthesis in Streptomyces antibioticus: stable ribonucleic acid species synthesized by young and old cells. Biochem Biophys Res Commun. 1975 Mar 17;63(2):469–475. doi: 10.1016/0006-291x(75)90711-1. [DOI] [PubMed] [Google Scholar]
- Jones G. H., Weissbach H. RNA metabolism in Streptomyces antibioticus; effect of 5-fluorouracil on the appearance of phenoxazinone synthetase. Arch Biochem Biophys. 1970 Apr;137(2):558–573. doi: 10.1016/0003-9861(70)90473-x. [DOI] [PubMed] [Google Scholar]
- K'ominek L. A. Cycloheximide production by Streptomyces griseus: control mechanisms of cycloheximide biosynthesis. Antimicrob Agents Chemother. 1975 Jun;7(6):856–856. doi: 10.1128/aac.7.6.856. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATZ E., WEISSBACH H. Incorporation of C14-labeled amino acids into actinomycin and protein by Streptomyces antibioticus. J Biol Chem. 1963 Feb;238:666–675. [PubMed] [Google Scholar]
- KLUEPFEL D., LANCINI G. C., SARTORI G. METABOLISM OF BARBITAL BY STREPTOMYCES MEDITERRANEI. Appl Microbiol. 1965 Jul;13:600–604. doi: 10.1128/am.13.4.600-604.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz E., Demain A. L. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev. 1977 Jun;41(2):449–474. doi: 10.1128/br.41.2.449-474.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khokhlov A. S., Anisova L. N., Tovarova I. I., Kleiner E. M., Kovalenko I. V., Krasilnikova O. I., Kornitskaya E. Y., Pliner S. A. Effect of A-factor on the growth of asporogenous mutants of Streptomyces griseus, not producing this factor. Z Allg Mikrobiol. 1973;13(8):647–655. doi: 10.1002/jobm.3630130803. [DOI] [PubMed] [Google Scholar]
- Khokhlov A. S., Tovarova I. I. Studies on the streptomycin biosynthesis. Postepy Hig Med Dosw. 1972 Jul-Aug;26(4):469–491. [PubMed] [Google Scholar]
- Kleinkauf H., Gevers W. Nonribosomal polypeptide synthesis: the biosynthesis of a cyclic peptide antibiotic, gramicidin S. Cold Spring Harb Symp Quant Biol. 1969;34:805–813. doi: 10.1101/sqb.1969.034.01.092. [DOI] [PubMed] [Google Scholar]
- Kniep B., Grisebach H. Enzymic synthesis of streptomycin. Transfer of L-dihydrostreptose from dTDP-L-dihydrostreptose to streptidine-6-phosphate. FEBS Lett. 1976 May 15;65(1):44–46. doi: 10.1016/0014-5793(76)80617-5. [DOI] [PubMed] [Google Scholar]
- Kominek L. A. Biosynthesis of novobiocin by Streptomyces niveus. Antimicrob Agents Chemother. 1972 Feb;1(2):123–134. doi: 10.1128/aac.1.2.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kominek L. A. Cycloheximide production by Streptomyces griseus: alleviation of end-product inhibition by dialysis-extraction fermentation. Antimicrob Agents Chemother. 1975 Jun;7(6):861–863. doi: 10.1128/aac.7.6.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Královcová E., Blumauerová M., Vanek Z. The effect of 5,5-diethylbarbituric acid on the biosynthesis of anthracyclines in Streptomyces galilaeus. Folia Microbiol (Praha) 1977;22(3):182–188. doi: 10.1007/BF02885599. [DOI] [PubMed] [Google Scholar]
- Kurahashi K., Yamada M., Mori K., Fujikawa K., Kambe M., Imae Y., Sato E., Takahashi H., Sakamoto Y. Biosynthesis of cyclic oligopeptide. Cold Spring Harb Symp Quant Biol. 1969;34:815–826. doi: 10.1101/sqb.1969.034.01.093. [DOI] [PubMed] [Google Scholar]
- Laland S. G., Zimmer T. L. The protein thiotemplate mechanism of synthesis for the peptide antibiotics produced by Bacillus brevis. Essays Biochem. 1973;9:31–57. [PubMed] [Google Scholar]
- Lee S. G., Littau V., Lipmann F. The relation between sporulation and the induction of antibiotic synthesis and of amino acid uptake in Bacillus brevis. J Cell Biol. 1975 Aug;66(2):233–242. doi: 10.1083/jcb.66.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liras P., Villanueva J. R., Martín J. F. Sequential expression of macromolecule biosynthesis and candicidin formation in Streptomyces griseus. J Gen Microbiol. 1977 Oct;102(2):269–277. doi: 10.1099/00221287-102-2-269. [DOI] [PubMed] [Google Scholar]
- Liu C. M., McDaniel L. E., Schaffner C. P. Studies on candicidin biogenesis. J Antibiot (Tokyo) 1972 Feb;25(2):116–121. doi: 10.7164/antibiotics.25.116. [DOI] [PubMed] [Google Scholar]
- Liu C., Hermann T., Miller P. A. Feedback inhibition of the synthesis of an antibiotic: aurodox (X-5108). J Antibiot (Tokyo) 1977 Mar;30(3):244–251. doi: 10.7164/antibiotics.30.244. [DOI] [PubMed] [Google Scholar]
- Liu D. M., McDaniel L. E., Schaffner C. P. Factors affecting the production of candicidin. Antimicrob Agents Chemother. 1975 Feb;7(2):196–202. doi: 10.1128/aac.7.2.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luengo J. M., Revilla G., Villanueva J. R., Martín J. F. Lysine regulation of penicillin biosynthesis in low-producing and industrial strains of Penicillium chrysogenum. J Gen Microbiol. 1979 Nov;115(1):207–211. doi: 10.1099/00221287-115-1-207. [DOI] [PubMed] [Google Scholar]
- Lur'e L. M., Verkhovtseva T. P., Levitov M. M. Biosintez penitsillina i dvukhfaznost' razvitiia kul'tury P. chrysogenum. Antibiotiki. 1975 Apr;20(4):291–295. [PubMed] [Google Scholar]
- MARGALITH P., PAGANI H. Rifomycin. XIV. Production of rifomycin B. Appl Microbiol. 1961 Jul;9:325–334. doi: 10.1128/am.9.4.325-334.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magasanik B., Prival M. J., Brenchley J. E., Tyler B. M., DeLeo A. B., Streicher S. L., Bender R. A., Paris C. G. Glutamine synthetase as a regulator of enzyme synthesis. Curr Top Cell Regul. 1974;8(0):119–138. doi: 10.1016/b978-0-12-152808-9.50010-9. [DOI] [PubMed] [Google Scholar]
- Majumdar M. K., Majumdar S. K. Isolation and characterization of three phosphoamido-neomycins and their conversion into neomycin by Streptomyces fradiae. Biochem J. 1970 Nov;120(2):271–278. doi: 10.1042/bj1200271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Majumdar M. K., Majumdar S. K. Synthesis of neomycin by washed mycelium of Streptomyces fradiae and some physiological considerations. Folia Microbiol (Praha) 1971;16(4):285–292. doi: 10.1007/BF02872809. [DOI] [PubMed] [Google Scholar]
- Malik V. S., Vining L. C. Effect of chloramphenicol on its biosynthesis by Streptomyces species 3022a. Can J Microbiol. 1972 Feb;18(2):137–143. doi: 10.1139/m72-023. [DOI] [PubMed] [Google Scholar]
- Malik V. S., Vining L. C. Metabolism of chloramphenicol by the producing organism. Can J Microbiol. 1970 Mar;16(3):173–179. doi: 10.1139/m70-030. [DOI] [PubMed] [Google Scholar]
- Marshall R., Redfield B., Katz E., Weissbach H. Changes in phenoxazinone synthetase activity during the growth cycle of Streptomyces antibioticus. Arch Biochem Biophys. 1968 Feb;123(2):317–323. doi: 10.1016/0003-9861(68)90141-0. [DOI] [PubMed] [Google Scholar]
- Martin J. F., Demain A. L. Cleavage of adenosine 5'-monophosphate during uptake by Streptomyces griseus. J Bacteriol. 1977 Nov;132(2):590–595. doi: 10.1128/jb.132.2.590-595.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin J. F., Demain A. L. Control by phosphate of candicidin production. Biochem Biophys Res Commun. 1976 Aug 23;71(4):1103–1109. doi: 10.1016/0006-291x(76)90767-1. [DOI] [PubMed] [Google Scholar]
- Martin J. F., Demain A. L. Effect of exogenous nucleotides on the candicidin fermentation. Can J Microbiol. 1977 Oct;23(10):1334–1339. doi: 10.1139/m77-202. [DOI] [PubMed] [Google Scholar]
- Martín J. F., Liras P., Demain A. L. ATP and adenylate energy charge during phosphate-mediated control of antibiotic synthesis. Biochem Biophys Res Commun. 1978 Aug 14;83(3):822–828. doi: 10.1016/0006-291x(78)91468-7. [DOI] [PubMed] [Google Scholar]
- Martín J. F., Naharro G., Liras P., Villanueva J. R. Isolation of mutants deregulated in phosphate control of candicidin biosynthesis. J Antibiot (Tokyo) 1979 Jun;32(6):600–606. doi: 10.7164/antibiotics.32.600. [DOI] [PubMed] [Google Scholar]
- Masurekar P. S., Demain A. L. Lysine control of penicillin biosynthesis. Can J Microbiol. 1972 Jul;18(7):1045–1048. doi: 10.1139/m72-162. [DOI] [PubMed] [Google Scholar]
- Matern H., Brillinger G. U., Pape H. Stoffwechselprodukte von Mikroorganismen. 114. Thymidin-diphospho-D-glucose-oxidoreduktase aus Streptomyces rimosus. Arch Mikrobiol. 1973;88(1):37–48. [PubMed] [Google Scholar]
- Mertz F. P., Doolin L. E. The effect of inorganic phosphate on the biosynthesis of vancomycin. Can J Microbiol. 1973 Feb;19(2):263–270. doi: 10.1139/m73-040. [DOI] [PubMed] [Google Scholar]
- Mikulík K., Karnetová J., Quyen N., Blumauerová M., Komersová I., Vanek Z. Interaction of tetracycline with protein synthesizing system of Streptomyces aureofaciens. J Antibiot (Tokyo) 1971 Dec;24(12):801–809. doi: 10.7164/antibiotics.24.801. [DOI] [PubMed] [Google Scholar]
- Miller A. L., Walker J. B. Accumulation of streptomycin-phosphate in cultures of streptomycin producers grown on a high-phosphate medium. J Bacteriol. 1970 Oct;104(1):8–12. doi: 10.1128/jb.104.1.8-12.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller A. L., Walker J. B. Enzymatic phosphorylation of streptomycin by extracts of streptomycin-producing strains of Streptomyces. J Bacteriol. 1969 Aug;99(2):401–405. doi: 10.1128/jb.99.2.401-405.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muth W. L., Nash C. H., 3rd Biosynthesis of mycophenolic acid: purification and characterization of S-adenosyl-L-methionine: demethylmycophenolic acid O-methyltransferase. Antimicrob Agents Chemother. 1975 Sep;8(3):321–327. doi: 10.1128/aac.8.3.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ortmann R., Matern U., Grisebach H., Stadler P., Sinnwell V., Paulsen H. NADPH-dependent formation of thymidine diphosphodihydrostreptose from thymidine diphospho-D-glucose in a cell-free system from Streptomyces griseus and its correlation with streptomycin biosynthesis. Eur J Biochem. 1974 Apr 1;43(2):265–271. doi: 10.1111/j.1432-1033.1974.tb03409.x. [DOI] [PubMed] [Google Scholar]
- POLSINELLI M., ALBERTINI A., CASSANI G., CIFERRI O. RELATION OF BIOCHEMICAL MUTATIONS TO ACTINOMYCIN SYNTHESIS IN STREPTOMYCES ANTIBIOTICUS. J Gen Microbiol. 1965 May;39:239–246. doi: 10.1099/00221287-39-2-239. [DOI] [PubMed] [Google Scholar]
- Pape H., Brillinger G. U. Stoffwechselfprodukte von Mikroorganismen. 113. Biosynthese von Thymidin-diphospho-mycarose durch ein zellfreies System aus Streptomyces rimosus. Arch Mikrobiol. 1973;88(1):25–35. [PubMed] [Google Scholar]
- Pastan I., Adhya S. Cyclic adenosine 5'-monophosphate in Escherichia coli. Bacteriol Rev. 1976 Sep;40(3):527–551. doi: 10.1128/br.40.3.527-551.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paś L., Raczyńska-Bojanowska K. Arginine in viomycin biosynthesis. Acta Biochim Pol. 1969;16(3):297–311. [PubMed] [Google Scholar]
- Paś L., Raczyńska-Bojanowska K. On the inhibition mechanisms of viomycin synthesis by inorganic phosphate. Acta Biochim Pol. 1968;15(4):355–367. [PubMed] [Google Scholar]
- Penzikova G. A., Levitov M. M. Izuchenie aktivnosti transamidinazy v svizi s biosintezom streptomitsina. Mikrobiologiia. 1970 Mar-Apr;39(2):337–342. [PubMed] [Google Scholar]
- Pirt S. J., Righelato R. C. Effect of Growth Rate on the Synthesis of Penicillin by Penicillium chrysogenum in Batch and Chemostat Cultures. Appl Microbiol. 1967 Nov;15(6):1284–1290. doi: 10.1128/am.15.6.1284-1290.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pogell B. M. S-adenosylmethionine:O-demethylpuromycin O-methyltransferase. Methods Enzymol. 1975;43:508–515. doi: 10.1016/0076-6879(75)43112-3. [DOI] [PubMed] [Google Scholar]
- Purich D. L., Fromm H. J. Additional factors influencing enzyme responses to the adenylate energy charge. J Biol Chem. 1973 Jan 25;248(2):461–466. [PubMed] [Google Scholar]
- Ragan C. M., Vining L. C. Intracellular cyclic adenosine 3',5'-monophosphate levels and streptomycin production in cultures of Streptomyces griseus. Can J Microbiol. 1978 Aug;24(8):1012–1015. doi: 10.1139/m78-168. [DOI] [PubMed] [Google Scholar]
- Rogers T. O., Birnbaum J. Biosynthesis of fosfomycin by Streptomyces fradiae. Antimicrob Agents Chemother. 1974 Feb;5(2):121–132. doi: 10.1128/aac.5.2.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rossi A., Corcoran J. W. Identification of a multienzyme complex synthesizing fatty acids in the actinomycete Streptomyces erythreus. Biochem Biophys Res Commun. 1973 Feb 5;50(3):597–602. doi: 10.1016/0006-291x(73)91286-2. [DOI] [PubMed] [Google Scholar]
- SMITH C. G., HINMAN J. W. CHLORAMPHENICOL. Prog Ind Microbiol. 1963;4:137–163. [PubMed] [Google Scholar]
- SNOKE J. E., CORNELL N. PROTOPLAST LYSIS AND INHIBITION OF GROWTH OF BACILLUS LICHENIFORMIS BY BACITRACIN. J Bacteriol. 1965 Feb;89:415–420. doi: 10.1128/jb.89.2.415-420.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SOLTERO F. V., JOHNSON M. J. Continuous addition of glucose for evaluation of penicillin-producing cultures. Appl Microbiol. 1954 Jan;2(1):41–44. doi: 10.1128/am.2.1.41-44.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SOLTERO F. V., JOHNSON M. J. The effect of the carbohydrate nutrition on penicillin production by Penicillium chrysogenum Q-176. Appl Microbiol. 1953 Jan;1(1):52–57. doi: 10.1128/am.1.1.52-57.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sankaran L., Pogell B. M. Biosynthesis of puromycin in Streptomyces alboniger: regulation and properties of O-demethylpuromycin O-methyltransferase. Antimicrob Agents Chemother. 1975 Dec;8(6):721–732. doi: 10.1128/aac.8.6.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sankaran L., Pogell B. M. Differential inhibition of catabolite-sensitive enzyme induction by intercalating dyes. Nat New Biol. 1973 Oct 31;245(148):257–260. doi: 10.1038/newbio245257a0. [DOI] [PubMed] [Google Scholar]
- Sarkar N., Paulus H. Function of peptide antibiotics in sporulation. Nat New Biol. 1972 Oct 25;239(95):228–230. doi: 10.1038/newbio239228a0. [DOI] [PubMed] [Google Scholar]
- Schaeffer P. Sporulation and the production of antibiotics, exoenzymes, and exotonins. Bacteriol Rev. 1969 Mar;33(1):48–71. doi: 10.1128/br.33.1.48-71.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silaeva S. A., Glazer V. M., Shestakov S. V., Prokof'ev M. A. Nukleotidy produtsiruiushchikh i ne produtsiruiushchikh granitsidin c kletok Bacillus brevis GB. Biokhimiia. 1965 Sep-Oct;30(5):947–955. [PubMed] [Google Scholar]
- Smith R. L., Bungay H. R., Pittenger R. C. Growth-Biosynthesis Relationships in Erythromycin Fermentation. Appl Microbiol. 1962 Jul;10(4):293–296. doi: 10.1128/am.10.4.293-296.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spízek J., Málek I., Suchý J., Vondrácek M., Vanek Z. Metabolites of Streptomyces noursei. V. Relation of the production of cycloheximide and actiphenol to the production of fungicidin. Folia Microbiol (Praha) 1965 Sep;10(5):263–266. doi: 10.1007/BF02871023. [DOI] [PubMed] [Google Scholar]
- Tomino S., Yamada M., Itoh H., Kurahashik Cell-free synthesis of gramicidin S. Biochemistry. 1967 Aug;6(8):2552–2560. doi: 10.1021/bi00860a037. [DOI] [PubMed] [Google Scholar]
- Toropova E. G., Egorov N. S., Suchkova L. A. Shchelochnaia fosfataza kul'tury Proactinomyces fructiferi var. ristomycini--produtsenta antibiotika ristomitsina. Antibiotiki. 1973 Jul;18(7):587–590. [PubMed] [Google Scholar]
- Unowsky J., Hoppe D. C. Increased production of the antibiotic aurodox (X-5108) by aurodox-resistant mutants. J Antibiot (Tokyo) 1978 Jul;31(7):662–666. doi: 10.7164/antibiotics.31.662. [DOI] [PubMed] [Google Scholar]
- WALKER J. B., HNILICA V. S. DEVELOPMENTAL CHANGES IN ARGININE: X AMIDINOTRANSFERASE ACTIVITY IN STREPTOMYCIN-PRODUCING STRAINS OF STREPTOMYCES. Biochim Biophys Acta. 1964 Sep 18;89:473–482. doi: 10.1016/0926-6569(64)90073-2. [DOI] [PubMed] [Google Scholar]
- WALKER M. S., WALKER J. B. BIOSYNTHESIS OF STREPTOMYCIN: CELL-FREE TRANSAMIDINATION IN STREPTOMYCES GRISEUS. Biochim Biophys Acta. 1964 Oct 9;93:201–203. doi: 10.1016/0304-4165(64)90284-3. [DOI] [PubMed] [Google Scholar]
- Walker J. B. Biosynthesis of the monoguanidinated inositol moiety of bluensomycin, a possible evolutionary precursor of streptomycin. J Biol Chem. 1974 Apr 25;249(8):2397–2404. [PubMed] [Google Scholar]
- Walker J. B. L-arginine:inosamine-P amidinotransferase(s). Methods Enzymol. 1975;43:451–458. doi: 10.1016/0076-6879(75)43101-9. [DOI] [PubMed] [Google Scholar]
- Walker J. B., Walker M. S. Enzymatic synthesis of streptidine from scyllo-inosamine. Biochemistry. 1967 Dec;6(12):3821–3829. doi: 10.1021/bi00864a028. [DOI] [PubMed] [Google Scholar]
- Walker M. S., Walker J. B. Streptomycin biosynthesis. Separation and substrate specificities of phosphatases acting on guanidinodeoxy-scyllo-inositol phosphate and streptomycin-(streptidino)phosphate. J Biol Chem. 1971 Nov 25;246(22):7034–7040. [PubMed] [Google Scholar]
- Weinberg E. D. Secondary metabolism: raison d'être. Perspect Biol Med. 1971;14(4):565–577. doi: 10.1353/pbm.1971.0033. [DOI] [PubMed] [Google Scholar]
- Weinberg E. D., Tonnis S. M. Role of manganese in biosynthesis of bacitracin. Can J Microbiol. 1967 May;13(5):614–615. doi: 10.1139/m67-079. [DOI] [PubMed] [Google Scholar]
- Zaslavskaya P. L., Zhukov V. G., Kornitskaya E. Y., Tovarova I. I., Khokhlov A. S. Influence of A-factor on the ultrastructure of the A-factor deficient mutant of Streptomyces griseus. Microbios. 1979;25(101-102):145–153. [PubMed] [Google Scholar]