Rapid clearance of fetal DNA from maternal plasma
Abstract
Fetal DNA has been detected in maternal plasma during pregnancy. We investigated the clearance of circulating fetal DNA after delivery, using quantitative PCR analysis of the sex-determining region Y gene as a marker for male fetuses. We analyzed plasma samples from 12 women 1-42 d after delivery of male babies and found that circulating fetal DNA was undetectable by day 1 after delivery. To obtain a higher time-resolution picture of fetal DNA clearance, we performed serial sampling of eight women, which indicated that most women (seven) had undetectable levels of circulating fetal DNA by 2 h postpartum. The mean half-life for circulating fetal DNA was 16.3 min (range 4-30 min). Plasma nucleases were found to account for only part of the clearance of plasma fetal DNA. The rapid turnover of circulating DNA suggests that plasma DNA analysis may be less susceptible to false-positive results, which result from carryover from previous pregnancies, than is the detection of fetal cells in maternal blood; also, rapid turnover may be useful for the monitoring of feto-maternal events with rapid dynamics. These results also may have implications for the study of other types of nonhost DNA in plasma, such as circulating tumor-derived and graft-derived DNA in oncology and transplant patients, respectively.
Full Text
The Full Text of this article is available as a PDF (240.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Artlett C. M., Smith J. B., Jimenez S. A. Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis. N Engl J Med. 1998 Apr 23;338(17):1186–1191. doi: 10.1056/NEJM199804233381704. [DOI] [PubMed] [Google Scholar]
- Bianchi D. W. Fetal DNA in maternal plasma: the plot thickens and the placental barrier thins. Am J Hum Genet. 1998 Apr;62(4):763–764. doi: 10.1086/301809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bianchi D. W., Flint A. F., Pizzimenti M. F., Knoll J. H., Latt S. A. Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc Natl Acad Sci U S A. 1990 May;87(9):3279–3283. doi: 10.1073/pnas.87.9.3279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bianchi D. W., Zickwolf G. K., Weil G. J., Sylvester S., DeMaria M. A. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):705–708. doi: 10.1073/pnas.93.2.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen X. Q., Stroun M., Magnenat J. L., Nicod L. P., Kurt A. M., Lyautey J., Lederrey C., Anker P. Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nat Med. 1996 Sep;2(9):1033–1035. doi: 10.1038/nm0996-1033. [DOI] [PubMed] [Google Scholar]
- Cheung M. C., Goldberg J. D., Kan Y. W. Prenatal diagnosis of sickle cell anaemia and thalassaemia by analysis of fetal cells in maternal blood. Nat Genet. 1996 Nov;14(3):264–268. doi: 10.1038/ng1196-264. [DOI] [PubMed] [Google Scholar]
- Chused T. M., Steinberg A. D., Talal N. The clearance and localization of nucleic acids by New Zealand and normal mice. Clin Exp Immunol. 1972 Dec;12(4):465–476. [PMC free article] [PubMed] [Google Scholar]
- Emlen W., Mannik M. Kinetics and mechanisms for removal of circulating single-stranded DNA in mice. J Exp Med. 1978 Mar 1;147(3):684–699. doi: 10.1084/jem.147.3.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frost P. G., Lachmann P. J. The relationship of desoxyribonuclease inhibitor levels in human sera to the occurrence of antinuclear antibodies. Clin Exp Immunol. 1968 Jun;3(5):447–455. [PMC free article] [PubMed] [Google Scholar]
- Gosse C., Le Pecq J. B., Defrance P., Paoletti C. Initial degradation of deoxyribonucleic acid after injection in mammals. Cancer Res. 1965 Jul;25(6):877–883. [PubMed] [Google Scholar]
- HERRIOTT R. M., CONNOLLY J. H., GUPTA S. Blood nucleases and infectious viral nucleic acids. Nature. 1961 Mar 11;189:817–820. doi: 10.1038/189817a0. [DOI] [PubMed] [Google Scholar]
- Hamada H., Arinami T., Hamaguchi H., Kubo T. Fetal nucleated cells in maternal peripheral blood after delivery. Am J Obstet Gynecol. 1994 Apr;170(4):1188–1193. doi: 10.1016/s0002-9378(94)70120-2. [DOI] [PubMed] [Google Scholar]
- Heid C. A., Stevens J., Livak K. J., Williams P. M. Real time quantitative PCR. Genome Res. 1996 Oct;6(10):986–994. doi: 10.1101/gr.6.10.986. [DOI] [PubMed] [Google Scholar]
- Holland P. M., Abramson R. D., Watson R., Gelfand D. H. Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7276–7280. doi: 10.1073/pnas.88.16.7276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsieh T. T., Pao C. C., Hor J. J., Kao S. M. Presence of fetal cells in maternal circulation after delivery. Hum Genet. 1993 Sep;92(2):204–205. doi: 10.1007/BF00219693. [DOI] [PubMed] [Google Scholar]
- Kwok S., Higuchi R. Avoiding false positives with PCR. Nature. 1989 May 18;339(6221):237–238. doi: 10.1038/339237a0. [DOI] [PubMed] [Google Scholar]
- Lee L. G., Connell C. R., Bloch W. Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Res. 1993 Aug 11;21(16):3761–3766. doi: 10.1093/nar/21.16.3761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Livak K. J., Flood S. J., Marmaro J., Giusti W., Deetz K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 1995 Jun;4(6):357–362. doi: 10.1101/gr.4.6.357. [DOI] [PubMed] [Google Scholar]
- Lo Y. M., Corbetta N., Chamberlain P. F., Rai V., Sargent I. L., Redman C. W., Wainscoat J. S. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997 Aug 16;350(9076):485–487. doi: 10.1016/S0140-6736(97)02174-0. [DOI] [PubMed] [Google Scholar]
- Lo Y. M., Lo E. S., Watson N., Noakes L., Sargent I. L., Thilaganathan B., Wainscoat J. S. Two-way cell traffic between mother and fetus: biologic and clinical implications. Blood. 1996 Dec 1;88(11):4390–4395. [PubMed] [Google Scholar]
- Lo Y. M., Patel P., Baigent C. N., Gillmer M. D., Chamberlain P., Travi M., Sampietro M., Wainscoat J. S., Fleming K. A. Prenatal sex determination from maternal peripheral blood using the polymerase chain reaction. Hum Genet. 1993 Jan;90(5):483–488. doi: 10.1007/BF00217445. [DOI] [PubMed] [Google Scholar]
- Lo Y. M., Patel P., Wainscoat J. S., Sampietro M., Gillmer M. D., Fleming K. A. Prenatal sex determination by DNA amplification from maternal peripheral blood. Lancet. 1989 Dec 9;2(8676):1363–1365. doi: 10.1016/s0140-6736(89)91969-7. [DOI] [PubMed] [Google Scholar]
- Lo Y. M., Tein M. S., Lau T. K., Haines C. J., Leung T. N., Poon P. M., Wainscoat J. S., Johnson P. J., Chang A. M., Hjelm N. M. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet. 1998 Apr;62(4):768–775. doi: 10.1086/301800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lo Y. M., Tein M. S., Pang C. C., Yeung C. K., Tong K. L., Hjelm N. M. Presence of donor-specific DNA in plasma of kidney and liver-transplant recipients. Lancet. 1998 May 2;351(9112):1329–1330. doi: 10.1016/s0140-6736(05)79055-3. [DOI] [PubMed] [Google Scholar]
- Longo M. C., Berninger M. S., Hartley J. L. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene. 1990 Sep 1;93(1):125–128. doi: 10.1016/0378-1119(90)90145-h. [DOI] [PubMed] [Google Scholar]
- Nawroz H., Koch W., Anker P., Stroun M., Sidransky D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat Med. 1996 Sep;2(9):1035–1037. doi: 10.1038/nm0996-1035. [DOI] [PubMed] [Google Scholar]
- Nelson J. L., Furst D. E., Maloney S., Gooley T., Evans P. C., Smith A., Bean M. A., Ober C., Bianchi D. W. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet. 1998 Feb 21;351(9102):559–562. doi: 10.1016/S0140-6736(97)08357-8. [DOI] [PubMed] [Google Scholar]
- Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
- Simpson J. L., Elias S. Isolating fetal cells in the maternal circulation. Hum Reprod Update. 1995 Jul;1(4):409–418. doi: 10.1093/humupd/1.4.409. [DOI] [PubMed] [Google Scholar]
- TSUMITA T., IWANAGA M. Fate of injected deoxyribonucleic acid in mice. Nature. 1963 Jun 15;198:1088–1089. doi: 10.1038/1981088a0. [DOI] [PubMed] [Google Scholar]
- Thomas M. R., Tutschek B., Frost A., Rodeck C. H., Yazdani N., Craft I., Williamson R. The time of appearance and disappearance of fetal DNA from the maternal circulation. Prenat Diagn. 1995 Jul;15(7):641–646. doi: 10.1002/pd.1970150709. [DOI] [PubMed] [Google Scholar]
- Walknowska J., Conte F. A., Grumbach M. M. Practical and theoretical implications of fetal-maternal lymphocyte transfer. Lancet. 1969 Jun 7;1(7606):1119–1122. doi: 10.1016/s0140-6736(69)91642-0. [DOI] [PubMed] [Google Scholar]