Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse - PubMed
Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse
S J Tabrizi et al. Ann Neurol. 2000 Jan.
Abstract
Huntington's disease is a progressive neurodegenerative disease caused by an abnormally expanded (>36) CAG repeat within the ITI5 gene encoding a widely expressed 349-kd protein, huntingtin. The medium spiny neurons of the caudate preferentially degenerate in Huntington's disease, with the presence of neuronal intranuclear inclusions. Excitotoxicity is thought to be important in the pathogenesis of Huntington's disease; the recently described mitochondrial respiratory chain and aconitase defects in Huntington's disease brain are consistent with this hypothesis. A transgenic mouse model (R6/2) of Huntington's disease develops a movement disorder, muscle wasting, and premature death at about 14 to 16 weeks. Selective neuronal death in these mice is not seen until 14 weeks. Biochemical analysis of R6/2 mouse brain at 12 weeks demonstrated a significant reduction in aconitase and mitochondrial complex IV activities in the striatum and a decrease in complex IV activity in the cerebral cortex. Increased immunostaining for inducible nitric oxide synthase and nitrotyrosine was seen in the transgenic mouse model but not control mouse brains. These results extend the parallels between Huntington's disease and the transgenic mouse model to biochemical events and suggest complex IV deficiency and elevated nitric oxide and superoxide radical generation precede neuronal death in the R6/2 mouse and contribute to pathogenesis.
Similar articles
-
Wright DJ, Renoir T, Smith ZM, Frazier AE, Francis PS, Thorburn DR, McGee SL, Hannan AJ, Gray LJ. Wright DJ, et al. Transl Psychiatry. 2015 Jan 6;5(1):e492. doi: 10.1038/tp.2014.131. Transl Psychiatry. 2015. PMID: 25562842 Free PMC article.
-
Giampà C, Laurenti D, Anzilotti S, Bernardi G, Menniti FS, Fusco FR. Giampà C, et al. PLoS One. 2010 Oct 15;5(10):e13417. doi: 10.1371/journal.pone.0013417. PLoS One. 2010. PMID: 20976216 Free PMC article.
-
Herbst EA, Holloway GP. Herbst EA, et al. Neuroscience. 2015 Sep 10;303:515-23. doi: 10.1016/j.neuroscience.2015.07.025. Epub 2015 Jul 14. Neuroscience. 2015. PMID: 26186895
-
Li JY, Popovic N, Brundin P. Li JY, et al. NeuroRx. 2005 Jul;2(3):447-64. doi: 10.1602/neurorx.2.3.447. NeuroRx. 2005. PMID: 16389308 Free PMC article. Review.
-
Bioenergetics in Huntington's disease.
Grünewald T, Beal MF. Grünewald T, et al. Ann N Y Acad Sci. 1999;893:203-13. doi: 10.1111/j.1749-6632.1999.tb07827.x. Ann N Y Acad Sci. 1999. PMID: 10672239 Review.
Cited by
-
Mutant huntingtin fails to directly impair brain mitochondria.
Hamilton J, Brustovetsky T, Brustovetsky N. Hamilton J, et al. J Neurochem. 2019 Dec;151(6):716-731. doi: 10.1111/jnc.14852. Epub 2019 Oct 7. J Neurochem. 2019. PMID: 31418857 Free PMC article.
-
Mitochondrial medicine for neurodegenerative diseases.
Du H, Yan SS. Du H, et al. Int J Biochem Cell Biol. 2010 May;42(5):560-72. doi: 10.1016/j.biocel.2010.01.004. Epub 2010 Jan 11. Int J Biochem Cell Biol. 2010. PMID: 20067840 Free PMC article. Review.
-
The corticostriatal pathway in Huntington's disease.
Cepeda C, Wu N, André VM, Cummings DM, Levine MS. Cepeda C, et al. Prog Neurobiol. 2007 Apr;81(5-6):253-71. doi: 10.1016/j.pneurobio.2006.11.001. Epub 2006 Dec 13. Prog Neurobiol. 2007. PMID: 17169479 Free PMC article. Review.
-
HSF1 and Its Role in Huntington's Disease Pathology.
Kim H, Gomez-Pastor R. Kim H, et al. Adv Exp Med Biol. 2023;1410:35-95. doi: 10.1007/5584_2022_742. Adv Exp Med Biol. 2023. PMID: 36396925 Review.
-
Oxygen consumption deficit in Huntington disease mouse brain under metabolic stress.
Lou S, Lepak VC, Eberly LE, Roth B, Cui W, Zhu XH, Öz G, Dubinsky JM. Lou S, et al. Hum Mol Genet. 2016 Jul 1;25(13):2813-2826. doi: 10.1093/hmg/ddw138. Epub 2016 May 18. Hum Mol Genet. 2016. PMID: 27193167 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases