Time course of odorant-induced activation in the human primary olfactory cortex - PubMed
Time course of odorant-induced activation in the human primary olfactory cortex
N Sobel et al. J Neurophysiol. 2000 Jan.
Free article
Abstract
Paradoxically, attempts to visualize odorant-induced functional magnetic resonance imaging (fMRI) activation in the human have yielded activations in secondary olfactory regions but not in the primary olfactory cortex-piriform cortex. We show that odorant-induced activation in primary olfactory cortex was not previously made evident with fMRI because of the unique time course of activity in this region: in primary olfactory cortex, odorants induced a strong early transient increase in signal amplitude that then habituated within 30-40 s of odorant presence. This time course of activation seen here in the primary olfactory cortex of the human is almost identical to that recorded electrophysiologically in the piriform cortex of the rat. Mapping activation with analyses that are sensitive to both this transient increase in signal amplitude, and temporal-variance, enabled us to use fMRI to consistently visualize odorant-induced activation in the human primary olfactory cortex. The combination of continued accurate odorant detection at the behavioral level despite primary olfactory cortex habituation at the physiological level suggests that the functional neuroanatomy of the olfactory response may change throughout prolonged olfactory stimulation.
Similar articles
-
Activation and habituation in olfaction--an fMRI study.
Poellinger A, Thomas R, Lio P, Lee A, Makris N, Rosen BR, Kwong KK. Poellinger A, et al. Neuroimage. 2001 Apr;13(4):547-60. doi: 10.1006/nimg.2000.0713. Neuroimage. 2001. PMID: 11305885
-
Dissociable codes of odor quality and odorant structure in human piriform cortex.
Gottfried JA, Winston JS, Dolan RJ. Gottfried JA, et al. Neuron. 2006 Feb 2;49(3):467-79. doi: 10.1016/j.neuron.2006.01.007. Neuron. 2006. PMID: 16446149
-
Sniffing and smelling: separate subsystems in the human olfactory cortex.
Sobel N, Prabhakaran V, Desmond JE, Glover GH, Goode RL, Sullivan EV, Gabrieli JD. Sobel N, et al. Nature. 1998 Mar 19;392(6673):282-6. doi: 10.1038/32654. Nature. 1998. PMID: 9521322
-
Imaging and coding in the olfactory system.
Kauer JS, White J. Kauer JS, et al. Annu Rev Neurosci. 2001;24:963-79. doi: 10.1146/annurev.neuro.24.1.963. Annu Rev Neurosci. 2001. PMID: 11520924 Review.
-
How is the olfactory map formed and interpreted in the mammalian brain?
Mori K, Sakano H. Mori K, et al. Annu Rev Neurosci. 2011;34:467-99. doi: 10.1146/annurev-neuro-112210-112917. Annu Rev Neurosci. 2011. PMID: 21469960 Review.
Cited by
-
Zang Y, Han P, Chen B, Hähner A, Yan X, Hummel T. Zang Y, et al. Eur Arch Otorhinolaryngol. 2021 Aug;278(8):2843-2850. doi: 10.1007/s00405-020-06547-x. Epub 2021 Jan 3. Eur Arch Otorhinolaryngol. 2021. PMID: 33389011
-
Involvement of the left anterior insula and frontopolar gyrus in odor discrimination.
Plailly J, Radnovich AJ, Sabri M, Royet JP, Kareken DA. Plailly J, et al. Hum Brain Mapp. 2007 May;28(5):363-72. doi: 10.1002/hbm.20290. Hum Brain Mapp. 2007. PMID: 17089374 Free PMC article.
-
Gottfried JA, Deichmann R, Winston JS, Dolan RJ. Gottfried JA, et al. J Neurosci. 2002 Dec 15;22(24):10819-28. doi: 10.1523/JNEUROSCI.22-24-10819.2002. J Neurosci. 2002. PMID: 12486175 Free PMC article.
-
Brain responses to odor mixtures with sub-threshold components.
Hummel T, Olgun S, Gerber J, Huchel U, Frasnelli J. Hummel T, et al. Front Psychol. 2013 Oct 24;4:786. doi: 10.3389/fpsyg.2013.00786. eCollection 2013. Front Psychol. 2013. PMID: 24167499 Free PMC article.
-
Masaoka Y, Sugiyama H, Yoshida M, Yoshikawa A, Honma M, Koiwa N, Kamijo S, Watanabe K, Kubota S, Iizuka N, Ida M, Ono K, Izumizaki M. Masaoka Y, et al. Front Neurosci. 2021 Aug 3;15:709050. doi: 10.3389/fnins.2021.709050. eCollection 2021. Front Neurosci. 2021. PMID: 34413723 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources