Diaphragm structure and function in the Florida manatee (Trichechus manatus latirostris) - PubMed
- ️Sat Jan 01 2000
Diaphragm structure and function in the Florida manatee (Trichechus manatus latirostris)
S Rommel et al. Anat Rec. 2000.
Free article
Abstract
Relative to many other mammals, little is known about the functional morphology of the four extant species of the order Sirenia. In this study, 166 Florida manatee (Trichechus manatus latirostris) carcasses fresh enough to collect detailed anatomical information were examined to describe the gross anatomy of the diaphragm. Our results show that the Florida manatee's diaphragm differs from those of other mammals in that it: lies in a dorsal plane, rather than in the more typical transverse plane; is located dorsal to the heart and does not attach to the sternum; and attaches medially at the "I"-shaped central tendon to bony projections extending ventrally from the vertebral bodies, forming two distinct hemidiaphragms. The manatee's transverse septum is a separate structure that lies at a right angle to the diaphragm and separates the heart from the liver and other viscera. The extreme muscularity of the diaphragm and the ability of manatees to adjust their position in the water column with minimal external movement suggest that diaphragmatic contractions may change the volume of each pleural cavity to affect buoyancy, roll, and pitch. We also hypothesize that such contractions, in concert with contractions of powerful abdominal muscles, may compress gas in the massive large intestine, and thereby also contribute to buoyancy control.
Copyright 2000 Wiley-Liss, Inc.
Similar articles
-
Evolution and Functional Differentiation of the Diaphragm Muscle of Mammals.
Fogarty MJ, Sieck GC. Fogarty MJ, et al. Compr Physiol. 2019 Mar 14;9(2):715-766. doi: 10.1002/cphy.c180012. Compr Physiol. 2019. PMID: 30873594 Free PMC article. Review.
-
Ultrastructure of the spermatozoa from a Florida manatee (Trichechus manatus latirostris).
Miller DL, Dougherty MM, Decker SJ, Bossart GD. Miller DL, et al. Anat Histol Embryol. 2001 Aug;30(4):253-6. doi: 10.1046/j.1439-0264.2001.00330.x. Anat Histol Embryol. 2001. PMID: 11534332
-
Reynolds JE 3rd, Rommel SA. Reynolds JE 3rd, et al. Anat Rec. 1996 Jul;245(3):539-58. doi: 10.1002/(SICI)1097-0185(199607)245:3<539::AID-AR11>3.0.CO;2-Q. Anat Rec. 1996. PMID: 8800413
-
Barboza M, Kallaway K. Barboza M, et al. Arch Oral Biol. 2024 Feb;158:105871. doi: 10.1016/j.archoralbio.2023.105871. Epub 2023 Dec 13. Arch Oral Biol. 2024. PMID: 38128336 Review.
-
Rycyk AM, Bauer GB, Wells RS, Gaspard Iii JC, Mann DA. Rycyk AM, et al. PLoS One. 2022 May 18;17(5):e0268513. doi: 10.1371/journal.pone.0268513. eCollection 2022. PLoS One. 2022. PMID: 35584128 Free PMC article.
Cited by
-
Topography and morphology of the Eira barbara diaphragm.
Silva AMM, Silva RP, Rodrigues RAR, Giese EG, Lima AR, Branco É. Silva AMM, et al. BMC Zool. 2024 Aug 30;9(1):23. doi: 10.1186/s40850-024-00212-0. BMC Zool. 2024. PMID: 39215350 Free PMC article.
-
A new scenario of the evolutionary derivation of the mammalian diaphragm from shoulder muscles.
Hirasawa T, Kuratani S. Hirasawa T, et al. J Anat. 2013 May;222(5):504-17. doi: 10.1111/joa.12037. Epub 2013 Mar 1. J Anat. 2013. PMID: 23448284 Free PMC article.
-
Evolution and Functional Differentiation of the Diaphragm Muscle of Mammals.
Fogarty MJ, Sieck GC. Fogarty MJ, et al. Compr Physiol. 2019 Mar 14;9(2):715-766. doi: 10.1002/cphy.c180012. Compr Physiol. 2019. PMID: 30873594 Free PMC article. Review.
MeSH terms
LinkOut - more resources
Full Text Sources