A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Czeta (PKCzeta ) and PKC-related kinase 2 by PDK1 - PubMed
- ️Sat Jan 01 2000
. 2000 Jul 7;275(27):20806-13.
doi: 10.1074/jbc.M000421200.
Affiliations
- PMID: 10764742
- DOI: 10.1074/jbc.M000421200
Free article
A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Czeta (PKCzeta ) and PKC-related kinase 2 by PDK1
A Balendran et al. J Biol Chem. 2000.
Free article
Abstract
Members of the AGC subfamily of protein kinases including protein kinase B, p70 S6 kinase, and protein kinase C (PKC) isoforms are activated and/or stabilized by phosphorylation of two residues, one that resides in the T-loop of the kinase domain and the other that is located C-terminal to the kinase domain in a region known as the hydrophobic motif. Atypical PKC isoforms, such as PKCzeta, and the PKC-related kinases, like PRK2, are also activated by phosphorylation of their T-loop site but, instead of possessing a phosphorylatable Ser/Thr in their hydrophobic motif, contain an acidic residue. The 3-phosphoinositide-dependent protein kinase (PDK1) activates many members of the AGC subfamily of kinases in vitro, including PKCzeta and PRK2 by phosphorylating the T-loop residue. In the present study we demonstrate that the hydrophobic motifs of PKCzeta and PKCiota, as well as PRK1 and PRK2, interact with the kinase domain of PDK1. Mutation of the conserved residues of the hydrophobic motif of full-length PKCzeta, full-length PRK2, or PRK2 lacking its N-terminal regulatory domain abolishes or significantly reduces the ability of these kinases to interact with PDK1 and to become phosphorylated at their T-loop sites in vivo. Furthermore, overexpression of the hydrophobic motif of PRK2 in cells prevents the T-loop phosphorylation and thus inhibits the activation of PRK2 and PKCzeta. These findings indicate that the hydrophobic motif of PRK2 and PKCzeta acts as a "docking site" enabling the recruitment of PDK1 to these substrates. This is essential for their phosphorylation by PDK1 in cells.
Similar articles
-
Balendran A, Hare GR, Kieloch A, Williams MR, Alessi DR. Balendran A, et al. FEBS Lett. 2000 Nov 10;484(3):217-23. doi: 10.1016/s0014-5793(00)02162-1. FEBS Lett. 2000. PMID: 11078882
-
Dettori R, Sonzogni S, Meyer L, Lopez-Garcia LA, Morrice NA, Zeuzem S, Engel M, Piiper A, Neimanis S, Frödin M, Biondi RM. Dettori R, et al. J Biol Chem. 2009 Oct 30;284(44):30318-27. doi: 10.1074/jbc.M109.051151. Epub 2009 Sep 1. J Biol Chem. 2009. PMID: 19723632 Free PMC article.
-
In vivo role of the phosphate groove of PDK1 defined by knockin mutation.
Collins BJ, Deak M, Murray-Tait V, Storey KG, Alessi DR. Collins BJ, et al. J Cell Sci. 2005 Nov 1;118(Pt 21):5023-34. doi: 10.1242/jcs.02617. Epub 2005 Oct 11. J Cell Sci. 2005. PMID: 16219676
-
Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions.
Biondi RM, Nebreda AR. Biondi RM, et al. Biochem J. 2003 May 15;372(Pt 1):1-13. doi: 10.1042/BJ20021641. Biochem J. 2003. PMID: 12600273 Free PMC article. Review.
-
PDK2: the missing piece in the receptor tyrosine kinase signaling pathway puzzle.
Dong LQ, Liu F. Dong LQ, et al. Am J Physiol Endocrinol Metab. 2005 Aug;289(2):E187-96. doi: 10.1152/ajpendo.00011.2005. Am J Physiol Endocrinol Metab. 2005. PMID: 16014356 Review.
Cited by
-
Substrate and docking interactions in serine/threonine protein kinases.
Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Goldsmith EJ, et al. Chem Rev. 2007 Nov;107(11):5065-81. doi: 10.1021/cr068221w. Epub 2007 Oct 19. Chem Rev. 2007. PMID: 17949044 Free PMC article. Review. No abstract available.
-
KIBRA (KIdney/BRAin protein) regulates learning and memory and stabilizes Protein kinase Mζ.
Vogt-Eisele A, Krüger C, Duning K, Weber D, Spoelgen R, Pitzer C, Plaas C, Eisenhardt G, Meyer A, Vogt G, Krieger M, Handwerker E, Wennmann DO, Weide T, Skryabin BV, Klugmann M, Pavenstädt H, Huentelmann MJ, Kremerskothen J, Schneider A. Vogt-Eisele A, et al. J Neurochem. 2014 Mar;128(5):686-700. doi: 10.1111/jnc.12480. Epub 2013 Oct 28. J Neurochem. 2014. PMID: 24117625 Free PMC article.
-
Parmentier JH, Gandhi GK, Wiggins MT, Saeed AE, Bourgoin SG, Malik KU. Parmentier JH, et al. BMC Cell Biol. 2004 Jan 21;5:4. doi: 10.1186/1471-2121-5-4. BMC Cell Biol. 2004. PMID: 14736339 Free PMC article.
-
Bauer AF, Sonzogni S, Meyer L, Zeuzem S, Piiper A, Biondi RM, Neimanis S. Bauer AF, et al. J Biol Chem. 2012 Jun 8;287(24):20590-602. doi: 10.1074/jbc.M111.327437. Epub 2012 Apr 16. J Biol Chem. 2012. PMID: 22511787 Free PMC article.
-
Ni S, Chen L, Li M, Zhao W, Shan X, Wu M, Cheng J, Liang L, Wang Y, Jiang W, Zhang J, Ni R. Ni S, et al. Tumour Biol. 2016 Oct;37(10):13799-13809. doi: 10.1007/s13277-016-5193-9. Epub 2016 Aug 1. Tumour Biol. 2016. PMID: 27481515
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous