A stable argon compound - PubMed
- ️Sat Jan 01 2000
. 2000 Aug 24;406(6798):874-6.
doi: 10.1038/35022551.
Affiliations
- PMID: 10972285
- DOI: 10.1038/35022551
A stable argon compound
L Khriachtchev et al. Nature. 2000.
Abstract
The noble gases have a particularly stable electronic configuration, comprising fully filled s and p valence orbitals. This makes these elements relatively non-reactive, and they exist at room temperature as monatomic gases. Pauling predicted in 1933 that the heavier noble gases, whose valence electrons are screened by core electrons and thus less strongly bound, could form stable molecules. This prediction was verified in 1962 by the preparation of xenon hexafluoroplatinate, XePtF6, the first compound to contain a noble-gas atom. Since then, a range of different compounds containing radon, xenon and krypton have been theoretically anticipated and prepared. Although the lighter noble gases neon, helium and argon are also expected to be reactive under suitable conditions, they remain the last three long-lived elements of the periodic table for which no stable compound is known. Here we report that the photolysis of hydrogen fluoride in a solid argon matrix leads to the formation of argon fluorohydride (HArF), which we have identified by probing the shift in the position of vibrational bands on isotopic substitution using infrared spectroscopy. Extensive ab initio calculations indicate that HArF is intrinsically stable, owing to significant ionic and covalent contributions to its bonding, thus confirming computational predictions that argon should form a stable hydride species with properties similar to those of the analogous xenon and krypton compounds reported before.
Similar articles
-
Pauzat F, Ellinger Y, Pilmé J, Mousis O. Pauzat F, et al. J Chem Phys. 2009 May 7;130(17):174313. doi: 10.1063/1.3126777. J Chem Phys. 2009. PMID: 19425782
-
Noble-gas hydrides: new chemistry at low temperatures.
Khriachtchev L, Räsänen M, Gerber RB. Khriachtchev L, et al. Acc Chem Res. 2009 Jan 20;42(1):183-91. doi: 10.1021/ar800110q. Acc Chem Res. 2009. PMID: 18720951
-
Insertion of noble gas atoms into cyanoacetylene: an ab initio and matrix isolation study.
Khriachtchev L, Lignell A, Tanskanen H, Lundell J, Kiljunen H, Räsänen M. Khriachtchev L, et al. J Phys Chem A. 2006 Oct 26;110(42):11876-85. doi: 10.1021/jp063731f. J Phys Chem A. 2006. PMID: 17048820
-
Formation of novel rare-gas molecules in low-temperature matrices.
Gerber RB. Gerber RB. Annu Rev Phys Chem. 2004;55:55-78. doi: 10.1146/annurev.physchem.55.091602.094420. Annu Rev Phys Chem. 2004. PMID: 15117247 Review.
-
[The pharmacology of the rare gases (helium, neon, argon, krypton, xenon)].
Featherstone RM, Settle W. Featherstone RM, et al. Actual Pharmacol (Paris). 1974;27:69-86. Actual Pharmacol (Paris). 1974. PMID: 4620129 Review. French. No abstract available.
Cited by
-
Grandinetti F. Grandinetti F. Nat Chem. 2013 May;5(5):438. doi: 10.1038/nchem.1631. Nat Chem. 2013. PMID: 23609097 No abstract available.
-
Noble-Gas Chemistry More than Half a Century after the First Report of the Noble-Gas Compound.
Mazej Z. Mazej Z. Molecules. 2020 Jul 1;25(13):3014. doi: 10.3390/molecules25133014. Molecules. 2020. PMID: 32630333 Free PMC article. Review.
-
Characterization of an organometallic xenon complex using NMR and IR spectroscopy.
Ball GE, Darwish TA, Geftakis S, George MW, Lawes DJ, Portius P, Rourke JP. Ball GE, et al. Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):1853-8. doi: 10.1073/pnas.0406527102. Epub 2005 Jan 27. Proc Natl Acad Sci U S A. 2005. PMID: 15677722 Free PMC article.
-
Dzięcioł B, Osadchuk I, Cukras J, Lundell J. Dzięcioł B, et al. Molecules. 2023 Jun 30;28(13):5148. doi: 10.3390/molecules28135148. Molecules. 2023. PMID: 37446809 Free PMC article.
-
Stable Lithium Argon compounds under high pressure.
Li X, Hermann A, Peng F, Lv J, Wang Y, Wang H, Ma Y. Li X, et al. Sci Rep. 2015 Nov 19;5:16675. doi: 10.1038/srep16675. Sci Rep. 2015. PMID: 26582083 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources