pubmed.ncbi.nlm.nih.gov

Domain-specific recruitment of amide amino acids for protein synthesis - PubMed

  • ️Sat Jan 01 2000

. 2000 Sep 7;407(6800):106-10.

doi: 10.1038/35024120.

Affiliations

Domain-specific recruitment of amide amino acids for protein synthesis

D L Tumbula et al. Nature. 2000.

Abstract

The formation of aminoacyl-transfer RNA is a crucial step in ensuring the accuracy of protein synthesis. Despite the central importance of this process in all living organisms, it remains unknown how archaea and some bacteria synthesize Asn-tRNA and Gln-tRNA. These amide aminoacyl-tRNAs can be formed by the direct acylation of tRNA, catalysed by asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, respectively. A separate, indirect pathway involves the formation of mis-acylated Asp-tRNA(Asn) or Glu-tRNA(Gln), and the subsequent amidation of these amino acids while they are bound to tRNA, which is catalysed by amidotransferases. Here we show that all archaea possess an archaea-specific heterodimeric amidotransferase (encoded by gatD and gatE) for Gln-tRNA formation. However, Asn-tRNA synthesis in archaea is divergent: some archaea use asparaginyl-tRNA synthetase, whereas others use a heterotrimeric amidotransferase (encoded by the gatA, gatB and gatC genes). Because bacteria primarily use transamidation, and the eukaryal cytoplasm uses glutaminyl-tRNA synthetase, it appears that the three domains use different mechanisms for Gln-tRNA synthesis; as such, this is the only known step in protein synthesis where all three domains have diverged. Closer inspection of the two amidotransferases reveals that each of them recruited a metabolic enzyme to aid its function; this provides direct evidence for a relationship between amino-acid metabolism and protein biosynthesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources