A marine microbial consortium apparently mediating anaerobic oxidation of methane - PubMed
- ️Sat Jan 01 2000
. 2000 Oct 5;407(6804):623-6.
doi: 10.1038/35036572.
Affiliations
- PMID: 11034209
- DOI: 10.1038/35036572
A marine microbial consortium apparently mediating anaerobic oxidation of methane
A Boetius et al. Nature. 2000.
Abstract
A large fraction of globally produced methane is converted to CO2 by anaerobic oxidation in marine sediments. Strong geochemical evidence for net methane consumption in anoxic sediments is based on methane profiles, radiotracer experiments and stable carbon isotope data. But the elusive microorganisms mediating this reaction have not yet been isolated, and the pathway of anaerobic oxidation of methane is insufficiently understood. Recent data suggest that certain archaea reverse the process of methanogenesis by interaction with sulphate-reducing bacteria. Here we provide microscopic evidence for a structured consortium of archaea and sulphate-reducing bacteria, which we identified by fluorescence in situ hybridization using specific 16S rRNA-targeted oligonucleotide probes. In this example of a structured archaeal-bacterial symbiosis, the archaea grow in dense aggregates of about 100 cells and are surrounded by sulphate-reducing bacteria. These aggregates were abundant in gas-hydrate-rich sediments with extremely high rates of methane-based sulphate reduction, and apparently mediate anaerobic oxidation of methane.
Comment in
-
DeLong EF. DeLong EF. Nature. 2000 Oct 5;407(6804):577, 579. doi: 10.1038/35036677. Nature. 2000. PMID: 11034193 No abstract available.
Similar articles
-
Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis.
Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF. Orphan VJ, et al. Science. 2001 Jul 20;293(5529):484-7. doi: 10.1126/science.1061338. Science. 2001. PMID: 11463914
-
Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane.
Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jørgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB. Michaelis W, et al. Science. 2002 Aug 9;297(5583):1013-5. doi: 10.1126/science.1072502. Science. 2002. PMID: 12169733
-
Insights into the genomes of archaea mediating the anaerobic oxidation of methane.
Meyerdierks A, Kube M, Lombardot T, Knittel K, Bauer M, Glöckner FO, Reinhardt R, Amann R. Meyerdierks A, et al. Environ Microbiol. 2005 Dec;7(12):1937-51. doi: 10.1111/j.1462-2920.2005.00844.x. Environ Microbiol. 2005. PMID: 16309392
-
Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea.
Shima S, Thauer RK. Shima S, et al. Curr Opin Microbiol. 2005 Dec;8(6):643-8. doi: 10.1016/j.mib.2005.10.002. Epub 2005 Oct 20. Curr Opin Microbiol. 2005. PMID: 16242993 Review.
-
Thauer RK. Thauer RK. Curr Opin Microbiol. 2011 Jun;14(3):292-9. doi: 10.1016/j.mib.2011.03.003. Epub 2011 Apr 12. Curr Opin Microbiol. 2011. PMID: 21489863 Review.
Cited by
-
Adams MM, Hoarfrost AL, Bose A, Joye SB, Girguis PR. Adams MM, et al. Front Microbiol. 2013 May 14;4:110. doi: 10.3389/fmicb.2013.00110. eCollection 2013. Front Microbiol. 2013. PMID: 23717305 Free PMC article.
-
Single-cell measurement of microbial growth rate with Raman microspectroscopy.
Caro TA, Kashyap S, Brown G, Chen C, Kopf SH, Templeton AS. Caro TA, et al. FEMS Microbiol Ecol. 2024 Aug 13;100(9):fiae110. doi: 10.1093/femsec/fiae110. FEMS Microbiol Ecol. 2024. PMID: 39113275 Free PMC article.
-
Schütte UM, Cadieux SB, Hemmerich C, Pratt LM, White JR. Schütte UM, et al. Front Microbiol. 2016 Jul 5;7:1035. doi: 10.3389/fmicb.2016.01035. eCollection 2016. Front Microbiol. 2016. PMID: 27458438 Free PMC article.
-
Mardanov AV, Kadnikov VV, Beletsky AV, Ravin NV. Mardanov AV, et al. Microorganisms. 2020 Aug 31;8(9):1333. doi: 10.3390/microorganisms8091333. Microorganisms. 2020. PMID: 32878336 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources