Sequence Data Analysis for Long Disordered Regions Prediction in the Calcineurin Family - PubMed
- PMID: 11072311
Sequence Data Analysis for Long Disordered Regions Prediction in the Calcineurin Family
Romero et al. Genome Inform Ser Workshop Genome Inform. 1997.
Abstract
Our recently reported results (PSB 3:471-482, 1998; Proc. IEEE Intnl. Conf. Neural Networks 1:90-95, 1997; PSB 3:435-446, 1998) provide strong support for a hypothesis that some amino acid sequences code for disordered regions rather than structured ones and that such disordered regions are commonly involved in function. General and family-specific neural network predictors developed in those previous studies suggest that different classes of disordered regions exist. Here, family-specific data preprocessing for disorder prediction in the calcineurin (CaN) family is explored. The results show that prediction of order and disorder on CaN sequence data benefits significantly from the use of family-specific preprocessing, with feature extraction through principal components analysis (PCA) outperforming feature selection techniques, although all methods do a good job of discriminating CaN-specific disordered regions from CaN-specific ordered regions. On the other hand, for the discrimination of CaN-specific disordered regions from general (unrelated to CaN) ordered regions, feature selection approaches proved to be more appropriate than PCA. The results further support a hypothesis that different kinds of disordered regions exist, as all family-specific disorder predictors developed in this study significantly outperformed a previously reported general multi-family disorder predictor.
Similar articles
-
Predicting intrinsic disorder from amino acid sequence.
Obradovic Z, Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK. Obradovic Z, et al. Proteins. 2003;53 Suppl 6:566-72. doi: 10.1002/prot.10532. Proteins. 2003. PMID: 14579347
-
POODLE-L: a two-level SVM prediction system for reliably predicting long disordered regions.
Hirose S, Shimizu K, Kanai S, Kuroda Y, Noguchi T. Hirose S, et al. Bioinformatics. 2007 Aug 15;23(16):2046-53. doi: 10.1093/bioinformatics/btm302. Epub 2007 Jun 1. Bioinformatics. 2007. PMID: 17545177
-
Predicting Binding Regions within Disordered Proteins.
Garner E, Romero P, Dunker AK, Brown C, Obradovic Z. Garner E, et al. Genome Inform Ser Workshop Genome Inform. 1999;10:41-50. Genome Inform Ser Workshop Genome Inform. 1999. PMID: 11072341
-
Intrinsic disorder in the Protein Data Bank.
Le Gall T, Romero PR, Cortese MS, Uversky VN, Dunker AK. Le Gall T, et al. J Biomol Struct Dyn. 2007 Feb;24(4):325-42. doi: 10.1080/07391102.2007.10507123. J Biomol Struct Dyn. 2007. PMID: 17206849
-
A practical overview of protein disorder prediction methods.
Ferron F, Longhi S, Canard B, Karlin D. Ferron F, et al. Proteins. 2006 Oct 1;65(1):1-14. doi: 10.1002/prot.21075. Proteins. 2006. PMID: 16856179 Review.
Cited by
-
Domain Organization in the 54-kDa Subunit of the Chloroplast Signal Recognition Particle.
Henderson RC, Gao F, Jayanthi S, Kight A, Sharma P, Goforth RL, Heyes CD, Henry RL, Suresh Kumar TK. Henderson RC, et al. Biophys J. 2016 Sep 20;111(6):1151-1162. doi: 10.1016/j.bpj.2016.08.004. Biophys J. 2016. PMID: 27653474 Free PMC article.
-
Hemmis CW, Berkmen M, Eser M, Schildbach JF. Hemmis CW, et al. J Bacteriol. 2011 Sep;193(18):4588-97. doi: 10.1128/JB.00351-11. Epub 2011 Jul 8. J Bacteriol. 2011. PMID: 21742866 Free PMC article.
-
Mir RA, Lovelace J, Schafer NP, Simone PD, Kellezi A, Kolar C, Spagnol G, Sorgen PL, Band H, Band V, Borgstahl GEO. Mir RA, et al. AIMS Biophys. 2016;3(1):195-208. doi: 10.3934/biophy.2016.1.195. Epub 2016 Mar 9. AIMS Biophys. 2016. PMID: 28492064 Free PMC article.
-
The McdAB system positions α-carboxysomes in proteobacteria.
MacCready JS, Tran L, Basalla JL, Hakim P, Vecchiarelli AG. MacCready JS, et al. Mol Microbiol. 2021 Jul;116(1):277-297. doi: 10.1111/mmi.14708. Epub 2021 Mar 8. Mol Microbiol. 2021. PMID: 33638215 Free PMC article.
-
Bagayoko I, Celli MG, Romay G, Poulicard N, Pinel-Galzi A, Julian C, Filloux D, Roumagnac P, Sérémé D, Bragard C, Hébrard E. Bagayoko I, et al. Viruses. 2021 Apr 23;13(5):737. doi: 10.3390/v13050737. Viruses. 2021. PMID: 33922593 Free PMC article.