Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18 - PubMed
- ️Mon Jan 01 2001
. 2001 Mar 1;410(6824):84-8.
doi: 10.1038/35065084.
Affiliations
- PMID: 11242046
- DOI: 10.1038/35065084
Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18
C I Lin et al. Nature. 2001.
Abstract
Excitatory amino-acid carrier 1 (EAAC1) is a high-affinity Na+-dependent L-glutamate/D,L-aspartate cell-membrane transport protein. It is expressed in brain as well as several non-nervous tissues. In brain, EAAC1 is the primary neuronal glutamate transporter. It has a polarized distribution in cells and mainly functions perisynaptically to transport glutamate from the extracellular environment. In the kidney it is involved in renal acidic amino-acid re-absorption and amino-acid metabolism. Here we describe the identification and characterization of an EAAC1-associated protein, GTRAP3-18. Like EAAC1, GTRAP3-18 is expressed in numerous tissues. It localizes to the cell membrane and cytoplasm, and specifically interacts with carboxy-terminal intracellular domain of EAAC1. Increasing the expression of GTRAP3-18 in cells reduces EAAC1-mediated glutamate transport by lowering substrate affinity. The expression of GTRAP3-18 can be upregulated by retinoic acid, which results in a specific reduction of EAAC1-mediated glutamate transport. These studies show that glutamate transport proteins can be regulated potently and that GTRAP can modulate the transport functions ascribed to EAAC1. GTRAP3-18 may be important in regulating the metabolic function of EAAC1.
Similar articles
-
Characterization and distribution of the neuronal glutamate transporter EAAC1 in rat brain.
Velaz-Faircloth M, McGraw TS, alandro MS, Fremeau RT Jr, Kilberg MS, Anderson KJ. Velaz-Faircloth M, et al. Am J Physiol. 1996 Jan;270(1 Pt 1):C67-75. doi: 10.1152/ajpcell.1996.270.1.C67. Am J Physiol. 1996. PMID: 8772431
-
Modulation of neuronal glutathione synthesis by EAAC1 and its interacting protein GTRAP3-18.
Aoyama K, Watabe M, Nakaki T. Aoyama K, et al. Amino Acids. 2012 Jan;42(1):163-9. doi: 10.1007/s00726-011-0861-y. Epub 2011 Mar 5. Amino Acids. 2012. PMID: 21373771 Review.
-
Glutamate transport and renal function.
Welbourne TC, Matthews JC. Welbourne TC, et al. Am J Physiol. 1999 Oct;277(4):F501-5. doi: 10.1152/ajprenal.1999.277.4.F501. Am J Physiol. 1999. PMID: 10516273 Review.
Cited by
-
Abidi A, Mignon-Ravix C, Cacciagli P, Girard N, Milh M, Villard L. Abidi A, et al. Eur J Hum Genet. 2016 Apr;24(4):615-8. doi: 10.1038/ejhg.2015.159. Epub 2015 Jul 15. Eur J Hum Genet. 2016. PMID: 26173968 Free PMC article.
-
Beart PM, O'Shea RD. Beart PM, et al. Br J Pharmacol. 2007 Jan;150(1):5-17. doi: 10.1038/sj.bjp.0706949. Epub 2006 Nov 6. Br J Pharmacol. 2007. PMID: 17088867 Free PMC article. Review.
-
Glutamate-induced inhibition of D-aspartate uptake in Müller glia from the retina.
Gadea A, López E, López-Colomé AM. Gadea A, et al. Neurochem Res. 2004 Jan;29(1):295-304. doi: 10.1023/b:nere.0000010458.45085.e8. Neurochem Res. 2004. PMID: 14992289
-
Kanai Y, Hediger MA. Kanai Y, et al. Pflugers Arch. 2004 Feb;447(5):469-79. doi: 10.1007/s00424-003-1146-4. Epub 2003 Oct 7. Pflugers Arch. 2004. PMID: 14530974 Review.
-
Wang QJ, Cui YZ, Zhang XY, Su J. Wang QJ, et al. Mol Med Rep. 2017 Nov;16(5):6518-6525. doi: 10.3892/mmr.2017.7421. Epub 2017 Sep 5. Mol Med Rep. 2017. PMID: 28901430 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases