Effects of flow rate and potassium intake on distal tubular potassium transfer - PubMed
Effects of flow rate and potassium intake on distal tubular potassium transfer
R N Khuri et al. Am J Physiol. 1975 Apr.
Abstract
Potassium transport was studied across proximal and distal tubular epithelium in rats on a normal, low- and high-potassium intake during progressive loading with isotonic saline (150 mM) or a moderately hypersomotic urea (200 mM) sodium chloride (100 mM) solution. Free-flow micropuncture and recollection techniques were used during the development of diruesis and tubular fluid (TF) analyzed for inulin-14C, potassium (K) and sodium (Na). Tubular puncture sites were localized by neoprene filling and microdissection. During the large increase in tubular flow rates (10 times): 1) fractional potassium reabsorption fell along the proximal tubule, 2) TFk along the distal tubule remained constant and independent of flow rate in control and high-k rats; thus, net potassium secretion increased in proportion to and was limited by flow rate. 3) In low-K rats TF k fell; with increasing flow rates distal K secretion was not effectively stimulated. 4) Distal tubular sodium reabsorption increased in all animals with flow rate, but tubular Na-K exchange ratios varied greatly. It is suggested that whenever sodium delivery stimulates distal tubular potassium secretion it does so by 1) increasing volume distal tubular potasssium secretion and by 2) augmenting the transepithelial electrical potential difference (lumen negative).
Similar articles
-
Effects of graded solute diuresis on renal tubular sodium transport in the rat.
Khuri RN, Strieder N, Wiederholt M, Giebisch G. Khuri RN, et al. Am J Physiol. 1975 Apr;228(4):1262-8. doi: 10.1152/ajplegacy.1975.228.4.1262. Am J Physiol. 1975. PMID: 1130524
-
Distal tubular tracer microinjection study of renal tubular potassium transport.
Fowler N, Giebisch G, Whittembury G. Fowler N, et al. Am J Physiol. 1975 Nov;229(5):1227-33. doi: 10.1152/ajplegacy.1975.229.5.1227. Am J Physiol. 1975. PMID: 1200139
-
Kunau RT Jr, Webb HL, Borman SC. Kunau RT Jr, et al. J Clin Invest. 1974 Dec;54(6):1488-95. doi: 10.1172/JCI107897. J Clin Invest. 1974. PMID: 4436444 Free PMC article.
-
Mechanisms of sodium, potassium and chloride transport by the renal distal tubule.
Ellison DH, Velázquez H, Wright FS. Ellison DH, et al. Miner Electrolyte Metab. 1987;13(6):422-32. Miner Electrolyte Metab. 1987. PMID: 3320724 Review.
-
Disposition and regulation of body potassium: an overview.
Suki WN. Suki WN. Am J Med Sci. 1976 Jul-Aug;272(1):31-41. doi: 10.1097/00000441-197607000-00004. Am J Med Sci. 1976. PMID: 134635 Review.
Cited by
-
Molecular diversity and regulation of renal potassium channels.
Hebert SC, Desir G, Giebisch G, Wang W. Hebert SC, et al. Physiol Rev. 2005 Jan;85(1):319-71. doi: 10.1152/physrev.00051.2003. Physiol Rev. 2005. PMID: 15618483 Free PMC article. Review.
-
Prostaglandin E2 mediates connecting tubule glomerular feedback.
Ren Y, D'Ambrosio MA, Garvin JL, Wang H, Carretero OA. Ren Y, et al. Hypertension. 2013 Dec;62(6):1123-8. doi: 10.1161/HYPERTENSIONAHA.113.02040. Epub 2013 Sep 23. Hypertension. 2013. PMID: 24060896 Free PMC article.
-
MiRP3 acts as an accessory subunit with the BK potassium channel.
Levy DI, Wanderling S, Biemesderfer D, Goldstein SA. Levy DI, et al. Am J Physiol Renal Physiol. 2008 Aug;295(2):F380-7. doi: 10.1152/ajprenal.00598.2007. Epub 2008 May 7. Am J Physiol Renal Physiol. 2008. PMID: 18463315 Free PMC article.
-
McCormick JA, Ellison DH. McCormick JA, et al. Compr Physiol. 2015 Jan;5(1):45-98. doi: 10.1002/cphy.c140002. Compr Physiol. 2015. PMID: 25589264 Free PMC article. Review.
-
Beck FX, Dörge A, Rick R, Schramm M, Thurau K. Beck FX, et al. Pflugers Arch. 1987 Aug;409(4-5):477-85. doi: 10.1007/BF00583804. Pflugers Arch. 1987. PMID: 3627964
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous