Quantitative aspects of metabolic organization: a discussion of concepts - PubMed
- ️Mon Jan 01 2001
Review
Quantitative aspects of metabolic organization: a discussion of concepts
S A Kooijman. Philos Trans R Soc Lond B Biol Sci. 2001.
Abstract
Metabolic organization of individual organisms follows simple quantitative rules that can be understood from basic physical chemical principles. Dynamic energy budget (DEB) theory identifies these rules, which quantify how individuals acquire and use energy and nutrients. The theory provides constraints on the metabolic organization of subcellular processes. Together with rules for interaction between individuals, it also provides a basis to understand population and ecosystem dynamics. The theory, therefore, links various levels of biological organization. It applies to all species of organisms and offers explanations for body-size scaling relationships of natural history parameters that are otherwise difficult to understand. A considerable number of popular empirical models turn out to be special cases of the DEB model, or very close numerical approximations. Strong and weak homeostasis and the partitionability of reserve kinetics are cornerstones of the theory and essential for understanding the evolution of metabolic organization.
Similar articles
-
Kooijman SA, Troost TA. Kooijman SA, et al. Biol Rev Camb Philos Soc. 2007 Feb;82(1):113-42. doi: 10.1111/j.1469-185X.2006.00006.x. Biol Rev Camb Philos Soc. 2007. PMID: 17313526 Review.
-
Maury O, Poggiale JC. Maury O, et al. J Theor Biol. 2013 May 7;324:52-71. doi: 10.1016/j.jtbi.2013.01.018. Epub 2013 Feb 8. J Theor Biol. 2013. PMID: 23395776
-
Reconciling theories for metabolic scaling.
Maino JL, Kearney MR, Nisbet RM, Kooijman SA. Maino JL, et al. J Anim Ecol. 2014 Jan;83(1):20-9. doi: 10.1111/1365-2656.12085. Epub 2013 May 13. J Anim Ecol. 2014. PMID: 23668377
-
A kinetic inhibition mechanism for maintenance.
Tolla C, Kooijman SA, Poggiale JC. Tolla C, et al. J Theor Biol. 2007 Feb 21;244(4):576-87. doi: 10.1016/j.jtbi.2006.09.001. Epub 2006 Sep 12. J Theor Biol. 2007. PMID: 17069860
Cited by
-
Tosca EM, Gauderat G, Fouliard S, Burbridge M, Chenel M, Magni P. Tosca EM, et al. CPT Pharmacometrics Syst Pharmacol. 2021 Nov;10(11):1396-1411. doi: 10.1002/psp4.12710. Epub 2021 Oct 28. CPT Pharmacometrics Syst Pharmacol. 2021. PMID: 34708556 Free PMC article.
-
Helm BR, Rinehart JP, Yocum GD, Greenlee KJ, Bowsher JH. Helm BR, et al. Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):10924-10929. doi: 10.1073/pnas.1703008114. Epub 2017 Sep 25. Proc Natl Acad Sci U S A. 2017. PMID: 28973885 Free PMC article.
-
Benchmarks in organism performance and their use in comparative analyses.
Edmunds PJ, Putnam HM, Nisbet RM, Muller EB. Edmunds PJ, et al. Oecologia. 2011 Oct;167(2):379-90. doi: 10.1007/s00442-011-2004-2. Epub 2011 May 8. Oecologia. 2011. PMID: 21553265
-
Sublethal toxicant effects with dynamic energy budget theory: model formulation.
Muller EB, Nisbet RM, Berkley HA. Muller EB, et al. Ecotoxicology. 2010 Jan;19(1):48-60. doi: 10.1007/s10646-009-0385-3. Epub 2009 Jul 25. Ecotoxicology. 2010. PMID: 19633955 Free PMC article.
-
Brown AL, Pfab F, Baxter EC, Detmer AR, Moeller HV, Nisbet RM, Cunning R. Brown AL, et al. Conserv Physiol. 2022 Oct 11;10(1):coac066. doi: 10.1093/conphys/coac066. eCollection 2022. Conserv Physiol. 2022. PMID: 36247693 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources