Radial glia development in the mouse olfactory bulb - PubMed
- ️Mon Jan 01 2001
Radial glia development in the mouse olfactory bulb
A C Puche et al. J Comp Neurol. 2001.
Abstract
Radial glia are critical for cell migration and lamination of the cortex. In most developing cortical structures, radial glia, as their name suggests, extend processes from the ventricle to the pia in regular parallel arrangements. However, immunohistochemical labeling from several laboratories suggests that radial glia have a more branched morphology in the olfactory bulb. To investigate the morphology of radial glia in the mouse olfactory bulb we (1) labeled radial glia and olfactory receptor neuron axons at 24-hour intervals by immunohistochemistry; and (2) developed a novel method of generating and applying "nanocrystals" of 1,1'-dioctadecyl-3,3,3',3'- tetramethylindocarbocyanine perchlorate (DiI) to the ventricle surface such that the processes of single olfactory bulb radial glia are labeled in the embryonic olfactory bulb. We examined the structure and interactions of radial glia with ingrowing olfactory receptor neuron (ORN) axons in late embryonic olfactory bulb development. These results showed that olfactory bulb radial glia do not form straight parallel structures as do radial glia in the neocortex but rather have a convoluted trajectory from the ventricle to the bulb surface. Moreover, olfactory bulb radial glia consistently extend tangential branches at the level of the internal plexiform layer. Beginning at embryonic day 17.5, two types of radial glia can be distinguished: type I radial glia have a process that extends from the ventricle into the glomerular layer. These apical processes form highly restricted tufts, or "glial glomeruli" at the same time that ORN axons are forming "axonal glomeruli." In type II radial glia the apical process does not enter the glomerular layer but instead ramifies within the external plexiform layer. The tight spatiotemporal relationship between the glomerulization of radial glia processes and ORN axons during development suggest that radial glia processes could play a role in the formation and/or stabilization of mammalian glomeruli.
Copyright 2001 Wiley-Liss, Inc.
Similar articles
-
Development of the olfactory bulb: evidence for glia-neuron interactions in glomerular formation.
Bailey MS, Puche AC, Shipley MT. Bailey MS, et al. J Comp Neurol. 1999 Dec 27;415(4):423-48. J Comp Neurol. 1999. PMID: 10570454
-
Amaya DA, Wegner M, Stolt CC, Chehrehasa F, Ekberg JA, St John JA. Amaya DA, et al. J Comp Neurol. 2015 Feb 1;523(2):183-96. doi: 10.1002/cne.23665. Epub 2014 Aug 30. J Comp Neurol. 2015. PMID: 25116467
-
Errors in lamina growth of primary olfactory axons in the rat and mouse olfactory bulb.
Tenne-Brown J, Key B. Tenne-Brown J, et al. J Comp Neurol. 1999 Jul 19;410(1):20-30. doi: 10.1002/(sici)1096-9861(19990719)410:1<20::aid-cne3>3.0.co;2-t. J Comp Neurol. 1999. PMID: 10397392
-
Olfactory bulb ensheathing glia: a unique cell type with axonal growth-promoting properties.
Ramón-Cueto A, Valverde F. Ramón-Cueto A, et al. Glia. 1995 Jul;14(3):163-73. doi: 10.1002/glia.440140302. Glia. 1995. PMID: 7591028 Review.
-
Formation of glomerular maps in the olfactory system.
Strotmann J, Breer H. Strotmann J, et al. Semin Cell Dev Biol. 2006 Aug;17(4):402-10. doi: 10.1016/j.semcdb.2006.04.010. Epub 2006 May 5. Semin Cell Dev Biol. 2006. PMID: 16807005 Review.
Cited by
-
Development of the mammalian main olfactory bulb.
Tufo C, Poopalasundaram S, Dorrego-Rivas A, Ford MC, Graham A, Grubb MS. Tufo C, et al. Development. 2022 Feb 1;149(3):dev200210. doi: 10.1242/dev.200210. Epub 2022 Feb 11. Development. 2022. PMID: 35147186 Free PMC article. Review.
-
Timing of neurogenesis is a determinant of olfactory circuitry.
Imamura F, Ayoub AE, Rakic P, Greer CA. Imamura F, et al. Nat Neurosci. 2011 Mar;14(3):331-7. doi: 10.1038/nn.2754. Epub 2011 Feb 6. Nat Neurosci. 2011. PMID: 21297629 Free PMC article.
-
Blood vessels form a scaffold for neuroblast migration in the adult olfactory bulb.
Bovetti S, Hsieh YC, Bovolin P, Perroteau I, Kazunori T, Puche AC. Bovetti S, et al. J Neurosci. 2007 May 30;27(22):5976-80. doi: 10.1523/JNEUROSCI.0678-07.2007. J Neurosci. 2007. PMID: 17537968 Free PMC article.
-
Ango F, Wu C, Van der Want JJ, Wu P, Schachner M, Huang ZJ. Ango F, et al. PLoS Biol. 2008 Apr 29;6(4):e103. doi: 10.1371/journal.pbio.0060103. PLoS Biol. 2008. PMID: 18447583 Free PMC article.
-
Role of radial glia in cytogenesis, patterning and boundary formation in the developing spinal cord.
McDermott KW, Barry DS, McMahon SS. McDermott KW, et al. J Anat. 2005 Sep;207(3):241-50. doi: 10.1111/j.1469-7580.2005.00462.x. J Anat. 2005. PMID: 16185248 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases