Interaction with the NMDA receptor locks CaMKII in an active conformation - PubMed
- ️Mon Jan 01 2001
. 2001 Jun 14;411(6839):801-5.
doi: 10.1038/35081080.
Affiliations
- PMID: 11459059
- DOI: 10.1038/35081080
Interaction with the NMDA receptor locks CaMKII in an active conformation
K U Bayer et al. Nature. 2001.
Abstract
Calcium- and calmodulin-dependent protein kinase II (CaMKII) and glutamate receptors are integrally involved in forms of synaptic plasticity that may underlie learning and memory. In the simplest model for long-term potentiation, CaMKII is activated by Ca2+ influx through NMDA (N-methyl-D-aspartate) receptors and then potentiates synaptic efficacy by inducing synaptic insertion and increased single-channel conductance of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors. Here we show that regulated CaMKII interaction with two sites on the NMDA receptor subunit NR2B provides a mechanism for the glutamate-induced translocation of the kinase to the synapse in hippocampal neurons. This interaction can lead to additional forms of potentiation by: facilitated CaMKII response to synaptic Ca2+; suppression of inhibitory autophosphorylation of CaMKII; and, most notably, direct generation of sustained Ca2+/calmodulin (CaM)-independent (autonomous) kinase activity by a mechanism that is independent of the phosphorylation state. Furthermore, the interaction leads to trapping of CaM that may reduce down-regulation of NMDA receptor activity. CaMKII-NR2B interaction may be prototypical for direct activation of a kinase by its targeting protein.
Similar articles
-
NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII.
Barria A, Malinow R. Barria A, et al. Neuron. 2005 Oct 20;48(2):289-301. doi: 10.1016/j.neuron.2005.08.034. Neuron. 2005. PMID: 16242409
-
Krapivinsky G, Medina I, Krapivinsky L, Gapon S, Clapham DE. Krapivinsky G, et al. Neuron. 2004 Aug 19;43(4):563-74. doi: 10.1016/j.neuron.2004.08.003. Neuron. 2004. PMID: 15312654
-
Activity-driven postsynaptic translocation of CaMKII.
Merrill MA, Chen Y, Strack S, Hell JW. Merrill MA, et al. Trends Pharmacol Sci. 2005 Dec;26(12):645-53. doi: 10.1016/j.tips.2005.10.003. Epub 2005 Oct 25. Trends Pharmacol Sci. 2005. PMID: 16253351 Review.
-
[Molecular mechanisms for memory formation].
Manabe T. Manabe T. Brain Nerve. 2008 Jul;60(7):707-15. Brain Nerve. 2008. PMID: 18646610 Review. Japanese.
Cited by
-
The CaMKII/GluN2B Protein Interaction Maintains Synaptic Strength.
Barcomb K, Hell JW, Benke TA, Bayer KU. Barcomb K, et al. J Biol Chem. 2016 Jul 29;291(31):16082-9. doi: 10.1074/jbc.M116.734822. Epub 2016 May 31. J Biol Chem. 2016. PMID: 27246855 Free PMC article.
-
Otmakhov N, Regmi S, Lisman JE. Otmakhov N, et al. PLoS One. 2015 Jun 18;10(6):e0130457. doi: 10.1371/journal.pone.0130457. eCollection 2015. PLoS One. 2015. PMID: 26086939 Free PMC article.
-
Molecular Mechanisms of Early and Late LTP.
Baltaci SB, Mogulkoc R, Baltaci AK. Baltaci SB, et al. Neurochem Res. 2019 Feb;44(2):281-296. doi: 10.1007/s11064-018-2695-4. Epub 2018 Dec 6. Neurochem Res. 2019. PMID: 30523578 Review.
-
Okamoto K, Narayanan R, Lee SH, Murata K, Hayashi Y. Okamoto K, et al. Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6418-23. doi: 10.1073/pnas.0701656104. Epub 2007 Apr 2. Proc Natl Acad Sci U S A. 2007. PMID: 17404223 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous