pubmed.ncbi.nlm.nih.gov

Solution structures of the cytoplasmic linkers between segments S4 and S5 (S4-S5) in domains III and IV of human brain sodium channels in SDS micelles - PubMed

Solution structures of the cytoplasmic linkers between segments S4 and S5 (S4-S5) in domains III and IV of human brain sodium channels in SDS micelles

K Miyamoto et al. J Pept Res. 2001 Sep.

Abstract

The two cytoplasmic linkers connecting segment S4 and segment S5 (S4-S5 linker) of both domain III (III/S4-S5) and IV (IV/S4-S5) of the sodium channel alpha-subunit are considered to work as a hydrophobic receptor for the inactivation particle because of the three hydrophobic amino acids of Ile-Phe-Met (IFM motif) in the III-IV linker of the sodium channel alpha-subunit. To date, the solution structures of the peptides related to III/S4-S5 (MP-D3: A1325-M1338) and IV/S4-S5 (MP-D4: T1648-L1666) of human brain sodium channels have been investigated using CD and (1)H NMR spectroscopies. SDS micelles were employed as a solvent. The micelles mimic either biological membranes or the interior of a protein and can be a relevant environment at the inactivated state of the channels. It was found that the secondary structures of both MP-D3 and MP-D4 assume alpha-helical conformations around the N-terminal half-side of the sequences, i.e. the residues between V1326 and L1331 in MP-D3 and between L1650 and S1656 in MP-D4. Residue A1329 in MP-D3, which is considered to interact with F1489 of the IFM motif, was found to be located within the alpha-helix. Residues F1651, M1654, M1655, L1657 and A1669 in MP-D4, which also play an important role in inactivation, formed a hydrophobic cluster on one side of the helix. This cluster was concluded to interact with the hydrophobic cluster due to the III-IV linker before the inactivation gate closes.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources