Replication dynamics of the yeast genome - PubMed
- ️Mon Jan 01 2001
Replication dynamics of the yeast genome
M K Raghuraman et al. Science. 2001.
Abstract
Oligonucleotide microarrays were used to map the detailed topography of chromosome replication in the budding yeast Saccharomyces cerevisiae. The times of replication of thousands of sites across the genome were determined by hybridizing replicated and unreplicated DNAs, isolated at different times in S phase, to the microarrays. Origin activations take place continuously throughout S phase but with most firings near mid-S phase. Rates of replication fork movement vary greatly from region to region in the genome. The two ends of each of the 16 chromosomes are highly correlated in their times of replication. This microarray approach is readily applicable to other organisms, including humans.
Similar articles
-
DNA replication. Genomic views of genome duplication.
Stillman B. Stillman B. Science. 2001 Dec 14;294(5550):2301-4. doi: 10.1126/science.1067929. Science. 2001. PMID: 11743187
-
Wyrick JJ, Aparicio JG, Chen T, Barnett JD, Jennings EG, Young RA, Bell SP, Aparicio OM. Wyrick JJ, et al. Science. 2001 Dec 14;294(5550):2357-60. doi: 10.1126/science.1066101. Science. 2001. PMID: 11743203
-
Early replication of short telomeres in budding yeast.
Bianchi A, Shore D. Bianchi A, et al. Cell. 2007 Mar 23;128(6):1051-62. doi: 10.1016/j.cell.2007.01.041. Cell. 2007. PMID: 17382879
-
Shaping time: chromatin structure and the DNA replication programme.
Donaldson AD. Donaldson AD. Trends Genet. 2005 Aug;21(8):444-9. doi: 10.1016/j.tig.2005.05.012. Trends Genet. 2005. PMID: 15951049 Review.
-
The dynamics of chromosome replication in yeast.
Lucas IA, Raghuraman MK. Lucas IA, et al. Curr Top Dev Biol. 2003;55:1-73. doi: 10.1016/s0070-2153(03)01001-9. Curr Top Dev Biol. 2003. PMID: 12959193 Review. No abstract available.
Cited by
-
Ethanol exposure increases mutation rate through error-prone polymerases.
Voordeckers K, Colding C, Grasso L, Pardo B, Hoes L, Kominek J, Gielens K, Dekoster K, Gordon J, Van der Zande E, Bircham P, Swings T, Michiels J, Van Loo P, Nuyts S, Pasero P, Lisby M, Verstrepen KJ. Voordeckers K, et al. Nat Commun. 2020 Jul 21;11(1):3664. doi: 10.1038/s41467-020-17447-3. Nat Commun. 2020. PMID: 32694532 Free PMC article.
-
dNTP pools determine fork progression and origin usage under replication stress.
Poli J, Tsaponina O, Crabbé L, Keszthelyi A, Pantesco V, Chabes A, Lengronne A, Pasero P. Poli J, et al. EMBO J. 2012 Feb 15;31(4):883-94. doi: 10.1038/emboj.2011.470. Epub 2012 Jan 10. EMBO J. 2012. PMID: 22234185 Free PMC article.
-
Rodriguez J, Tsukiyama T. Rodriguez J, et al. Genes Dev. 2013 Jan 1;27(1):74-86. doi: 10.1101/gad.202978.112. Genes Dev. 2013. PMID: 23307868 Free PMC article.
-
RNAP-II molecules participate in the anchoring of the ORC to rDNA replication origins.
Mayan MD. Mayan MD. PLoS One. 2013;8(1):e53405. doi: 10.1371/journal.pone.0053405. Epub 2013 Jan 4. PLoS One. 2013. PMID: 23308214 Free PMC article.
-
Resolving individual steps of Okazaki-fragment maturation at a millisecond timescale.
Stodola JL, Burgers PM. Stodola JL, et al. Nat Struct Mol Biol. 2016 May;23(5):402-8. doi: 10.1038/nsmb.3207. Epub 2016 Apr 11. Nat Struct Mol Biol. 2016. PMID: 27065195 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases