Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes - PubMed
Review
Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes
H Shimano. Prog Lipid Res. 2001 Nov.
Abstract
Roles of sterol regulatory element-binding proteins (SREBPs) have been established as lipid synthetic transcription factors especially for cholesterol and fatty acid synthesis. SREBPs have unique characteristics. Firstly, they are membrane-bound proteins and the N-terminal active portions enter nucleus to activate their target genes after proteolytic cleavage, which requires sterol-sensing molecule, SREBP-activating protein (SCAP) and is crucial for sterol-regulation. Secondly, they bind and activate sterol-regulatory (SREs) containing promoters as well as some E-boxes, which makes SREBPs eligible to regulate a wide range of lipid genes. Finally, three isoforms, SREBP-1a-1c, and have different roles in lipid synthesis. In vivo studies using transgenic and knockout mice suggest that SREBP-1 seems to be involved in energy metabolism including fatty acid and glucose/insulin metabolism, whereas SREBP-2 is specific to cholesterol synthesis. Future studies will be focused on understanding molecular mechanisms sensing cellular sterol and energy states where SREBPs are deeply involved.
Similar articles
-
Shimano H. Shimano H. Vitam Horm. 2002;65:167-94. doi: 10.1016/s0083-6729(02)65064-2. Vitam Horm. 2002. PMID: 12481547 Review.
-
Amemiya-Kudo M, Shimano H, Hasty AH, Yahagi N, Yoshikawa T, Matsuzaka T, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Osuga J, Harada K, Gotoda T, Sato R, Kimura S, Ishibashi S, Yamada N. Amemiya-Kudo M, et al. J Lipid Res. 2002 Aug;43(8):1220-35. J Lipid Res. 2002. PMID: 12177166
-
Maintaining cholesterol homeostasis: sterol regulatory element-binding proteins.
Weber LW, Boll M, Stampfl A. Weber LW, et al. World J Gastroenterol. 2004 Nov 1;10(21):3081-7. doi: 10.3748/wjg.v10.i21.3081. World J Gastroenterol. 2004. PMID: 15457548 Free PMC article. Review.
Cited by
-
Wang K, Zhang R, Lehwald N, Tao GZ, Liu B, Liu B, Koh Y, Sylvester KG. Wang K, et al. Front Endocrinol (Lausanne). 2023 Dec 13;14:1289004. doi: 10.3389/fendo.2023.1289004. eCollection 2023. Front Endocrinol (Lausanne). 2023. PMID: 38152126 Free PMC article.
-
Zhang Y, Jia XB, Liu YC, Yu WQ, Si YH, Guo SD. Zhang Y, et al. Front Nutr. 2022 Sep 12;9:971581. doi: 10.3389/fnut.2022.971581. eCollection 2022. Front Nutr. 2022. PMID: 36172518 Free PMC article.
-
Thomas C, Landrier JF, Gaillard D, Grober J, Monnot MC, Athias A, Besnard P. Thomas C, et al. Gut. 2006 Sep;55(9):1321-31. doi: 10.1136/gut.2005.085555. Epub 2006 Feb 16. Gut. 2006. PMID: 16484503 Free PMC article.
-
Salgado Pardo JI, Delgado Bermejo JV, González Ariza A, León Jurado JM, Marín Navas C, Iglesias Pastrana C, Martínez Martínez MDA, Navas González FJ. Salgado Pardo JI, et al. Animals (Basel). 2022 Apr 11;12(8):988. doi: 10.3390/ani12080988. Animals (Basel). 2022. PMID: 35454235 Free PMC article. Review.
-
Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels.
Romanenko VG, Fang Y, Byfield F, Travis AJ, Vandenberg CA, Rothblat GH, Levitan I. Romanenko VG, et al. Biophys J. 2004 Dec;87(6):3850-61. doi: 10.1529/biophysj.104.043273. Epub 2004 Oct 1. Biophys J. 2004. PMID: 15465867 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources