Autoinhibition and isoform-specific dominant negative inhibition of the type II cGMP-dependent protein kinase - PubMed
- ️Tue Jan 01 2002
. 2002 Oct 4;277(40):37242-53.
doi: 10.1074/jbc.M202060200. Epub 2002 Jul 1.
Affiliations
- PMID: 12093798
- DOI: 10.1074/jbc.M202060200
Free article
Autoinhibition and isoform-specific dominant negative inhibition of the type II cGMP-dependent protein kinase
Merritt K Taylor et al. J Biol Chem. 2002.
Free article
Abstract
In the absence of cyclic nucleotides, the cAMP-dependent protein kinase and cGMP-dependent protein kinases (cGKs) suppress phosphotransfer activity at the catalytic cleft by competitive inhibition of substrate binding with a pseudosubstrate sequence within the holoenzyme. The magnitude of inhibition can be diminished by autophosphorylation near this pseudosubstrate sequence. Activation of type I cGK (cGKI) and type II cGK (cGKII) are differentially regulated by their cyclic nucleotide-binding sites. To address the possibility that the distinct activation mechanisms of cGKII and cGKI result from differences in the autophosphorylation of the inhibitory domain, we investigated the effects of autophosphorylation on the kinetics of activation. Unlike the type I cGKs (cGKIalpha and Ibeta), cGKII autophosphorylation did not alter the basal activity, nor the sensitivity of the enzyme to cyclic nucleotide activation. To determine residues responsible for autoinhibition of cGKII, Ala was substituted for basic residues (Lys(122), Arg(118), and Arg(119)) or a hydrophobic residue (Val(125)) within the putative pseudosubstrate domain of cGKII. The integrity of these residues was essential for full cGKII autoinhibition. Furthermore, a cGKII truncation mutant containing this autoinhibitory region demonstrated a nanomolar IC(50) toward a constitutively active form of cGKII. Finally, we present evidence that the dominant negative properties of this truncation mutant are specific to cGKII when compared with cAMP-dependent protein kinase Calpha and cGKIbeta. These findings extend the known differences in the activation mechanisms among cGK isoforms and allow the design of an isoform-specific cGKII inhibitor.
Similar articles
-
Reed RB, Sandberg M, Jahnsen T, Lohmann SM, Francis SH, Corbin JD. Reed RB, et al. J Biol Chem. 1996 Jul 19;271(29):17570-5. doi: 10.1074/jbc.271.29.17570. J Biol Chem. 1996. PMID: 8663415
-
Function of cGMP-dependent protein kinases in the nervous system.
Feil R, Hofmann F, Kleppisch T. Feil R, et al. Rev Neurosci. 2005;16(1):23-41. doi: 10.1515/revneuro.2005.16.1.23. Rev Neurosci. 2005. PMID: 15810652 Review.
-
Molecular properties and biological functions of cGMP-dependent protein kinase II.
Vaandrager AB, Hogema BM, de Jonge HR. Vaandrager AB, et al. Front Biosci. 2005 Sep 1;10:2150-64. doi: 10.2741/1687. Front Biosci. 2005. PMID: 15970484 Review.
Cited by
-
A GluR1-cGKII interaction regulates AMPA receptor trafficking.
Serulle Y, Zhang S, Ninan I, Puzzo D, McCarthy M, Khatri L, Arancio O, Ziff EB. Serulle Y, et al. Neuron. 2007 Nov 21;56(4):670-88. doi: 10.1016/j.neuron.2007.09.016. Neuron. 2007. PMID: 18031684 Free PMC article.
-
Zhou L, Hosohata K, Gao S, Gu Z, Wang Z. Zhou L, et al. PLoS One. 2013 Jun 3;8(6):e63119. doi: 10.1371/journal.pone.0063119. Print 2014. PLoS One. 2013. PMID: 23755100 Free PMC article.
-
Bijvelds MJC, Tresadern G, Hellemans A, Smans K, Nieuwenhuijze NDA, Meijsen KF, Bongartz JP, Ver Donck L, de Jonge HR, Schuurkes JAJ, De Maeyer JH. Bijvelds MJC, et al. J Biol Chem. 2018 May 25;293(21):8173-8181. doi: 10.1074/jbc.RA118.002835. Epub 2018 Apr 13. J Biol Chem. 2018. PMID: 29653944 Free PMC article.
-
Swartling FJ, Ferletta M, Kastemar M, Weiss WA, Westermark B. Swartling FJ, et al. Oncogene. 2009 Sep 3;28(35):3121-31. doi: 10.1038/onc.2009.168. Epub 2009 Jun 22. Oncogene. 2009. PMID: 19543319 Free PMC article.