Is there more to GABA than synaptic inhibition? - PubMed
Review
Is there more to GABA than synaptic inhibition?
David F Owens et al. Nat Rev Neurosci. 2002 Sep.
Abstract
In the mature brain, GABA (gamma-aminobutyric acid) functions primarily as an inhibitory neurotransmitter. But it can also act as a trophic factor during nervous system development to influence events such as proliferation, migration, differentiation, synapse maturation and cell death. GABA mediates these processes by the activation of traditional ionotropic and metabotropic receptors, and probably by both synaptic and non-synaptic mechanisms. However, the functional properties of GABA receptor signalling in the immature brain are significantly different from, and in some ways opposite to, those found in the adult brain. The unique features of the early-appearing GABA signalling systems might help to explain how GABA acts as a developmental signal.
Similar articles
-
Regulation of excitation by GABA(A) receptor internalization.
Leidenheimer NJ. Leidenheimer NJ. Results Probl Cell Differ. 2008;44:1-28. doi: 10.1007/400_2007_039. Results Probl Cell Differ. 2008. PMID: 17549438 Review.
-
Metabotropic receptors for glutamate and GABA in pain.
Goudet C, Magnaghi V, Landry M, Nagy F, Gereau RW 4th, Pin JP. Goudet C, et al. Brain Res Rev. 2009 Apr;60(1):43-56. doi: 10.1016/j.brainresrev.2008.12.007. Epub 2008 Dec 25. Brain Res Rev. 2009. PMID: 19146876 Review.
-
Li SP, Lee HY, Park MS, Bahk JY, Chung BC, Kim MO. Li SP, et al. Synapse. 2006 Dec 15;60(8):557-66. doi: 10.1002/syn.20332. Synapse. 2006. PMID: 16983643
-
Extrasynaptic localization of GABA in the developing mouse cerebellum.
Takayama C, Inoue Y. Takayama C, et al. Neurosci Res. 2004 Dec;50(4):447-58. doi: 10.1016/j.neures.2004.08.012. Neurosci Res. 2004. PMID: 15567482
-
GABAergic signaling in the developing cerebellum.
Takayama C, Inoue Y. Takayama C, et al. Anat Sci Int. 2004 Sep;79(3):124-36. doi: 10.1111/j.1447-073x.2004.00081.x. Anat Sci Int. 2004. PMID: 15453613 Review.
Cited by
-
Gram-negative bacterial sensors for eukaryotic signal molecules.
Lesouhaitier O, Veron W, Chapalain A, Madi A, Blier AS, Dagorn A, Connil N, Chevalier S, Orange N, Feuilloley M. Lesouhaitier O, et al. Sensors (Basel). 2009;9(9):6967-90. doi: 10.3390/s90906967. Epub 2009 Sep 2. Sensors (Basel). 2009. PMID: 22399982 Free PMC article.
-
Cortical control of chandelier cells in neural codes.
Jung K, Choi Y, Kwon HB. Jung K, et al. Front Cell Neurosci. 2022 Oct 10;16:992409. doi: 10.3389/fncel.2022.992409. eCollection 2022. Front Cell Neurosci. 2022. PMID: 36299494 Free PMC article.
-
Dissection of regulatory networks that are altered in disease via differential co-expression.
Amar D, Safer H, Shamir R. Amar D, et al. PLoS Comput Biol. 2013;9(3):e1002955. doi: 10.1371/journal.pcbi.1002955. Epub 2013 Mar 7. PLoS Comput Biol. 2013. PMID: 23505361 Free PMC article.
-
Neonatal Seizures and Purinergic Signalling.
Menéndez Méndez A, Smith J, Engel T. Menéndez Méndez A, et al. Int J Mol Sci. 2020 Oct 22;21(21):7832. doi: 10.3390/ijms21217832. Int J Mol Sci. 2020. PMID: 33105750 Free PMC article. Review.
-
Rastoldo G, Marouane E, El-Mahmoudi N, Péricat D, Tighilet B. Rastoldo G, et al. Int J Mol Sci. 2022 Dec 3;23(23):15262. doi: 10.3390/ijms232315262. Int J Mol Sci. 2022. PMID: 36499588 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources