Photosystem II Excitation Pressure and Development of Resistance to Photoinhibition (I. Light-Harvesting Complex II Abundance and Zeaxanthin Content in Chlorella vulgaris) - PubMed
Photosystem II Excitation Pressure and Development of Resistance to Photoinhibition (I. Light-Harvesting Complex II Abundance and Zeaxanthin Content in Chlorella vulgaris)
D. P. Maxwell et al. Plant Physiol. 1995 Mar.
Abstract
The basis of the increased resistance to photoinhibition upon growth at low temperature was investigated. Photosystem II (PSII) excitation pressure was estimated in vivo as 1 - qp (photochemical quenching). We established that Chlorella vulgaris exposed to either 5[deg]C/150 [mu]mol m-2 s-1 or 27[deg]C/2200 [mu]mol m-2 s-1 experienced a high PSII excitation pressure of 0.70 to 0.75. In contrast, Chlorella exposed to either 27[deg]C/150 [mu]mol m-2 s-1 or 5[deg]C/20 [mu]mol m-2 s-1 experienced a low PSII excitation pressure of 0.10 to 0.20. Chlorella grown under either regime at high PSII excitation pressure exhibited: (a) 3-fold higher light-saturated rates of O2 evolution; (b) the complete conversion of PSII[alpha] centers to PSII[beta] centers; (c) a 3-fold lower epoxidation state of the xanthophyll cycle intermediates; (d) a 2.4-fold higher ratio of chlorophyll a/b; and (e) a lower abundance of light-harvesting polypeptides than Chlorella grown at either regime at low PSII excitation pressure. In addition, cells grown at 5[deg]C/150 [mu]mol m-2 s-1 exhibited resistance to photoinhibition comparable to that of cells grown at 27[deg]C/2200 [mu]mol m-2 s-1 and were 3- to 4-fold more resistant to photoinhibition than cells grown at either regime at low excitation pressure. We conclude that increased resistance to photoinhibition upon growth at low temperature reflects photosynthetic adjustment to high excitation pressure, which results in an increased capacity for nonradiative dissipation of excess light through zeaxanthin coupled with a lower probability of light absorption due to reduced chlorophyll per cell and decreased abundance of light-harvesting polypeptides.
Similar articles
-
Redox Regulation of Light-Harvesting Complex II and cab mRNA Abundance in Dunaliella salina.
Maxwell DP, Laudenbach DE, Huner N. Maxwell DP, et al. Plant Physiol. 1995 Nov;109(3):787-795. doi: 10.1104/pp.109.3.787. Plant Physiol. 1995. PMID: 12228633 Free PMC article.
-
Gray GR, Savitch LV, Ivanov AG, Huner N. Gray GR, et al. Plant Physiol. 1996 Jan;110(1):61-71. doi: 10.1104/pp.110.1.61. Plant Physiol. 1996. PMID: 12226171 Free PMC article.
-
Growth at Low Temperature Mimics High-Light Acclimation in Chlorella vulgaris.
Maxwell DP, Falk S, Trick CG, Huner N. Maxwell DP, et al. Plant Physiol. 1994 Jun;105(2):535-543. doi: 10.1104/pp.105.2.535. Plant Physiol. 1994. PMID: 12232221 Free PMC article.
-
Photosystem II Excitation Pressure and Photosynthetic Carbon Metabolism in Chlorella vulgaris.
Savitch LV, Maxwell DP, Huner N. Savitch LV, et al. Plant Physiol. 1996 May;111(1):127-136. doi: 10.1104/pp.111.1.127. Plant Physiol. 1996. PMID: 12226279 Free PMC article.
Cited by
-
Hollis L, Ivanov AG, Hüner NPA. Hollis L, et al. Planta. 2019 Apr;249(4):1189-1205. doi: 10.1007/s00425-018-03070-6. Epub 2019 Jan 2. Planta. 2019. PMID: 30603788
-
Nield J, Redding K, Hippler M. Nield J, et al. Eukaryot Cell. 2004 Dec;3(6):1370-80. doi: 10.1128/EC.3.6.1370-1380.2004. Eukaryot Cell. 2004. PMID: 15590812 Free PMC article. Review. No abstract available.
-
Teramoto H, Nakamori A, Minagawa J, Ono TA. Teramoto H, et al. Plant Physiol. 2002 Sep;130(1):325-33. doi: 10.1104/pp.004622. Plant Physiol. 2002. PMID: 12226512 Free PMC article.
-
Redox Regulation of Light-Harvesting Complex II and cab mRNA Abundance in Dunaliella salina.
Maxwell DP, Laudenbach DE, Huner N. Maxwell DP, et al. Plant Physiol. 1995 Nov;109(3):787-795. doi: 10.1104/pp.109.3.787. Plant Physiol. 1995. PMID: 12228633 Free PMC article.
References
LinkOut - more resources
Full Text Sources
Research Materials