A finite element model of cell deformation during magnetic bead twisting - PubMed
A finite element model of cell deformation during magnetic bead twisting
Srboljub M Mijailovich et al. J Appl Physiol (1985). 2002 Oct.
Free article
Abstract
Magnetic twisting cytometry probes mechanical properties of an adherent cell by applying a torque to a magnetic bead that is tightly bound to the cell surface. Here we have used a three-dimensional finite element model of cell deformation to compute the relationships between the applied torque and resulting bead rotation and lateral bead translation. From the analysis, we computed two coefficients that allow the cell elastic modulus to be estimated from measurements of either bead rotation or lateral bead translation, respectively, if the degree of bead embedding and the cell height are known. Although computed strains in proximity of the bead can be large, the relationships between applied torque and bead rotation or translation remain virtually linear up to bead rotations of 15 degrees, above which geometrical nonlinearities become significant. This appreciable linear range stands in contrast to the intrinsically nonlinear force-displacement relationship that is observed when cells are indented during atomic force microscopy. Finally, these computations support the idea that adhesive forces are sufficient to keep the bead firmly attached to the cell surface throughout the range of working torques.
Similar articles
-
Kamgoué A, Ohayon J, Tracqui P. Kamgoué A, et al. J Biomech Eng. 2007 Aug;129(4):523-30. doi: 10.1115/1.2746374. J Biomech Eng. 2007. PMID: 17655473
-
Ohayon J, Tracqui P, Fodil R, Féréol S, Laurent VM, Planus E, Isabey D. Ohayon J, et al. J Biomech Eng. 2004 Dec;126(6):685-98. doi: 10.1115/1.1824136. J Biomech Eng. 2004. PMID: 15796327
-
Ohayon J, Tracqui P. Ohayon J, et al. Ann Biomed Eng. 2005 Feb;33(2):131-41. doi: 10.1007/s10439-005-8972-9. Ann Biomed Eng. 2005. PMID: 15771267
-
A new method for application of force to cells via ferric oxide beads.
Glogauer M, Ferrier J. Glogauer M, et al. Pflugers Arch. 1998 Jan;435(2):320-7. doi: 10.1007/s004240050518. Pflugers Arch. 1998. PMID: 9382948 Review.
-
Torque measurement at the single-molecule level.
Forth S, Sheinin MY, Inman J, Wang MD. Forth S, et al. Annu Rev Biophys. 2013;42:583-604. doi: 10.1146/annurev-biophys-083012-130412. Annu Rev Biophys. 2013. PMID: 23541162 Free PMC article. Review.
Cited by
-
Probe Sensitivity to Cortical versus Intracellular Cytoskeletal Network Stiffness.
Vahabikashi A, Park CY, Perkumas K, Zhang Z, Deurloo EK, Wu H, Weitz DA, Stamer WD, Goldman RD, Fredberg JJ, Johnson M. Vahabikashi A, et al. Biophys J. 2019 Feb 5;116(3):518-529. doi: 10.1016/j.bpj.2018.12.021. Epub 2019 Jan 7. Biophys J. 2019. PMID: 30685055 Free PMC article.
-
Plectin contributes to mechanical properties of living cells.
Na S, Chowdhury F, Tay B, Ouyang M, Gregor M, Wang Y, Wiche G, Wang N. Na S, et al. Am J Physiol Cell Physiol. 2009 Apr;296(4):C868-77. doi: 10.1152/ajpcell.00604.2008. Epub 2009 Feb 25. Am J Physiol Cell Physiol. 2009. PMID: 19244477 Free PMC article.
-
The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics.
Guo M, Ehrlicher AJ, Mahammad S, Fabich H, Jensen MH, Moore JR, Fredberg JJ, Goldman RD, Weitz DA. Guo M, et al. Biophys J. 2013 Oct 1;105(7):1562-8. doi: 10.1016/j.bpj.2013.08.037. Biophys J. 2013. PMID: 24094397 Free PMC article.
-
Naqvi SM, McNamara LM. Naqvi SM, et al. Front Bioeng Biotechnol. 2020 Dec 14;8:597661. doi: 10.3389/fbioe.2020.597661. eCollection 2020. Front Bioeng Biotechnol. 2020. PMID: 33381498 Free PMC article. Review.
-
Is cell rheology governed by nonequilibrium-to-equilibrium transition of noncovalent bonds?
Chowdhury F, Na S, Collin O, Tay B, Li F, Tanaka T, Leckband DE, Wang N. Chowdhury F, et al. Biophys J. 2008 Dec 15;95(12):5719-27. doi: 10.1529/biophysj.108.139832. Epub 2008 Oct 3. Biophys J. 2008. PMID: 18835892 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources