G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase - PubMed
- ️Tue Jan 01 2002
. 2002 Nov 29;277(48):46010-9.
doi: 10.1074/jbc.M205035200. Epub 2002 Sep 23.
Affiliations
- PMID: 12297500
- DOI: 10.1074/jbc.M205035200
Free article
G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase
Natalie Lavine et al. J Biol Chem. 2002.
Free article
Abstract
A large number of studies have demonstrated co-purification or co-immunoprecipitation of receptors with G proteins. We have begun to look for the presence of effector molecules in these receptor complexes. Co-expression of different channel and receptor permutations in COS-7 and HEK 293 cells in combination with co-immunoprecipitation experiments established that the dopamine D(2) and D(4), and beta(2)-adrenergic receptors (beta(2)-AR) form stable complexes with Kir3 channels. The D(4)/Kir3 and D(2) receptor/Kir3 interaction does not occur when the channel and receptor are expressed separately and mixed prior to immunoprecipitation, indicating that the interaction is not an artifact of the experimental protocol and reflects a biosynthetic event. The observed complexes are stable in that they are not disrupted by receptor activation or modulation of G protein alpha subunit function. However, using a peptide that binds Gbetagamma (betaARKct), we show that Gbetagamma is critical for dopamine receptor-Kir3 complex formation, but not for maintenance of the complex. We also provide evidence that Kir3 channels and another effector, adenylyl cyclase, are stably associated with the beta(2)-adrenergic receptor and can be co-immunoprecipitated by anti-receptor antibodies. Using bioluminescence resonance energy transfer, we have shown that in living cells under physiological conditions, beta(2)AR interacts directly with Kir3.1/3.4 and Kir3.1/3.2c heterotetramers as well as with adenylyl cyclase. All of these interactions are stable in the presence of receptor agonists, suggesting that these signaling complexes persist during signal transduction. In addition, we provide evidence that the receptor-effector complexes are also found in vivo. The observation that several G protein-coupled receptors form stable complexes with their effectors suggests that this arrangement might be a general feature of G protein-coupled signal transduction.
Similar articles
-
Rebois RV, Robitaille M, Galés C, Dupré DJ, Baragli A, Trieu P, Ethier N, Bouvier M, Hébert TE. Rebois RV, et al. J Cell Sci. 2006 Jul 1;119(Pt 13):2807-18. doi: 10.1242/jcs.03021. J Cell Sci. 2006. PMID: 16787947
-
Gbetagamma subunit combinations differentially modulate receptor and effector coupling in vivo.
Robillard L, Ethier N, Lachance M, Hébert TE. Robillard L, et al. Cell Signal. 2000 Oct;12(9-10):673-82. doi: 10.1016/s0898-6568(00)00118-2. Cell Signal. 2000. PMID: 11080620
-
Lei Q, Jones MB, Talley EM, Schrier AD, McIntire WE, Garrison JC, Bayliss DA. Lei Q, et al. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9771-6. doi: 10.1073/pnas.97.17.9771. Proc Natl Acad Sci U S A. 2000. PMID: 10944236 Free PMC article.
-
The role of G proteins in assembly and function of Kir3 inwardly rectifying potassium channels.
Zylbergold P, Ramakrishnan N, Hebert T. Zylbergold P, et al. Channels (Austin). 2010 Sep-Oct;4(5):411-21. doi: 10.4161/chan.4.5.13327. Epub 2010 Sep 1. Channels (Austin). 2010. PMID: 20855978 Free PMC article. Review.
-
G beta gamma and KACh: old story, new insights.
Mirshahi T, Jin T, Logothetis DE. Mirshahi T, et al. Sci STKE. 2003 Aug 5;2003(194):PE32. doi: 10.1126/stke.2003.194.pe32. Sci STKE. 2003. PMID: 12902568 Review.
Cited by
-
Berlin S, Artzy E, Handklo-Jamal R, Kahanovitch U, Parnas H, Dascal N, Yakubovich D. Berlin S, et al. Front Pharmacol. 2020 Aug 12;11:1216. doi: 10.3389/fphar.2020.01216. eCollection 2020. Front Pharmacol. 2020. PMID: 32903404 Free PMC article.
-
Methamphetamine-evoked depression of GABA(B) receptor signaling in GABA neurons of the VTA.
Padgett CL, Lalive AL, Tan KR, Terunuma M, Munoz MB, Pangalos MN, Martínez-Hernández J, Watanabe M, Moss SJ, Luján R, Lüscher C, Slesinger PA. Padgett CL, et al. Neuron. 2012 Mar 8;73(5):978-89. doi: 10.1016/j.neuron.2011.12.031. Neuron. 2012. PMID: 22405207 Free PMC article.
-
Rubinstein M, Peleg S, Berlin S, Brass D, Dascal N. Rubinstein M, et al. J Physiol. 2007 May 15;581(Pt 1):17-32. doi: 10.1113/jphysiol.2006.125864. Epub 2007 Feb 8. J Physiol. 2007. PMID: 17289785 Free PMC article.
-
Pérez de la Mora M, Borroto-Escuela DO, Crespo-Ramírez M, Rejón-Orantes JDC, Palacios-Lagunas DA, Martínez-Mata MK, Sánchez-Luna D, Tesoro-Cruz E, Fuxe K. Pérez de la Mora M, et al. Cells. 2022 Jun 2;11(11):1826. doi: 10.3390/cells11111826. Cells. 2022. PMID: 35681521 Free PMC article. Review.
-
Rebois RV, Maki K, Meeks JA, Fishman PH, Hébert TE, Northup JK. Rebois RV, et al. Cell Signal. 2012 Nov;24(11):2051-60. doi: 10.1016/j.cellsig.2012.06.011. Epub 2012 Jul 1. Cell Signal. 2012. PMID: 22759790 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous