Shear properties of passive ventricular myocardium - PubMed
- ️Invalid Date
Shear properties of passive ventricular myocardium
Socrates Dokos et al. Am J Physiol Heart Circ Physiol. 2002 Dec.
Free article
Abstract
We examined the shear properties of passive ventricular myocardium in six pig hearts. Samples (3 x 3 x 3 mm) were cut from adjacent regions of the lateral left ventricular midwall, with sides aligned with the principal material axes. Four cycles of sinusoidal simple shear (maximum shear displacements of 0.1-0.5) were applied separately to each specimen in two orthogonal directions. Resulting forces along the three axes were measured. Three specimens from each heart were tested in different orientations to cover all six modes of simple shear deformation. Passive myocardium has nonlinear viscoelastic shear properties with reproducible, directionally dependent softening as strain is increased. Shear properties were clearly anisotropic with respect to the three principal material directions: passive ventricular myocardium is least resistant to simple shear displacements imposed in the plane of the myocardial layers and most resistant to shear deformations that produce extension of the myocyte axis. Comparison of results for the six different shear modes suggests that simple shear deformation is resisted by elastic elements aligned with the microstructural axes of the tissue.
Similar articles
-
Biomechanical properties and microstructure of human ventricular myocardium.
Sommer G, Schriefl AJ, Andrä M, Sacherer M, Viertler C, Wolinski H, Holzapfel GA. Sommer G, et al. Acta Biomater. 2015 Sep;24:172-92. doi: 10.1016/j.actbio.2015.06.031. Epub 2015 Jun 30. Acta Biomater. 2015. PMID: 26141152
-
Myocardial material parameter estimation-a comparative study for simple shear.
Schmid H, Nash MP, Young AA, Hunter PJ. Schmid H, et al. J Biomech Eng. 2006 Oct;128(5):742-50. doi: 10.1115/1.2244576. J Biomech Eng. 2006. PMID: 16995761
-
LeGrice IJ, Takayama Y, Covell JW. LeGrice IJ, et al. Circ Res. 1995 Jul;77(1):182-93. doi: 10.1161/01.res.77.1.182. Circ Res. 1995. PMID: 7788876
-
Holzapfel GA, Ogden RW. Holzapfel GA, et al. Philos Trans A Math Phys Eng Sci. 2009 Sep 13;367(1902):3445-75. doi: 10.1098/rsta.2009.0091. Philos Trans A Math Phys Eng Sci. 2009. PMID: 19657007 Review.
-
Theoretical models in mechanics of the left ventricle.
Pelle G, Ohayon J, Oddou C, Brun P. Pelle G, et al. Biorheology. 1984;21(5):709-22. doi: 10.3233/bir-1984-21504. Biorheology. 1984. PMID: 6394067 Review.
Cited by
-
Strain-dependent stress relaxation behavior of healthy right ventricular free wall.
Liu W, Labus KM, Ahern M, LeBar K, Avazmohammadi R, Puttlitz CM, Wang Z. Liu W, et al. Acta Biomater. 2022 Oct 15;152:290-299. doi: 10.1016/j.actbio.2022.08.043. Epub 2022 Aug 24. Acta Biomater. 2022. PMID: 36030049 Free PMC article.
-
Numerical investigation of the effect of cannula placement on thrombosis.
Ong C, Dokos S, Chan B, Lim E, Al Abed A, Bin Abu Osman NA, Kadiman S, Lovell NH. Ong C, et al. Theor Biol Med Model. 2013 May 16;10:35. doi: 10.1186/1742-4682-10-35. Theor Biol Med Model. 2013. PMID: 23680359 Free PMC article.
-
Wong J, Göktepe S, Kuhl E. Wong J, et al. Int J Numer Method Biomed Eng. 2013 Oct;29(10):1104-33. doi: 10.1002/cnm.2565. Epub 2013 Jun 24. Int J Numer Method Biomed Eng. 2013. PMID: 23798328 Free PMC article.
-
Resolving Fine Cardiac Structures in Rats with High-Resolution Diffusion Tensor Imaging.
Teh I, McClymont D, Burton RA, Maguire ML, Whittington HJ, Lygate CA, Kohl P, Schneider JE. Teh I, et al. Sci Rep. 2016 Jul 28;6:30573. doi: 10.1038/srep30573. Sci Rep. 2016. PMID: 27466029 Free PMC article.
-
Myocardial mesostructure and mesofunction.
Wilson AJ, Sands GB, LeGrice IJ, Young AA, Ennis DB. Wilson AJ, et al. Am J Physiol Heart Circ Physiol. 2022 Aug 1;323(2):H257-H275. doi: 10.1152/ajpheart.00059.2022. Epub 2022 Jun 3. Am J Physiol Heart Circ Physiol. 2022. PMID: 35657613 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources