NAD(P)H, a primary target of 1O2 in mitochondria of intact cells - PubMed
- ️Wed Jan 01 2003
. 2003 Jan 31;278(5):3298-307.
doi: 10.1074/jbc.M204230200. Epub 2002 Nov 13.
Affiliations
- PMID: 12433931
- DOI: 10.1074/jbc.M204230200
Free article
NAD(P)H, a primary target of 1O2 in mitochondria of intact cells
Frank Petrat et al. J Biol Chem. 2003.
Free article
Abstract
Direct reaction of NAD(P)H with oxidants like singlet oxygen ((1)O(2)) has not yet been demonstrated in biological systems. We therefore chose different rhodamine derivatives (tetramethylrhodamine methyl ester, TMRM; 2',4',5',7'-tetrabromorhodamine 123 bromide; and rhodamine 123; Rho 123) to selectively generate singlet oxygen within the NAD(P)H-rich mitochondrial matrix of cultured hepatocytes. In a cell-free system, photoactivation of all of these dyes led to the formation of (1)O(2), which readily oxidized NAD(P)H to NAD(P)(+). In hepatocytes loaded with the various dyes only TMRM and Rho 123 proved suited to generating (1)O(2) within the mitochondrial matrix space. Photoactivation of the intracellular dyes (TMRM for 5-10 s, Rho 123 for 60 s) led to a significant (29.6 +/- 8.2 and 30.2 +/- 5.2%) and rapid decrease in mitochondrial NAD(P)H fluorescence followed by a slow increase. Prolonged photoactivation (> or =15 s) of TMRM-loaded cells resulted in even stronger NAD(P)H oxidation, the rapid onset of mitochondrial permeability transition, and apoptotic cell death. These results demonstrate that NAD(P)H is the primary target for (1)O(2) in hepatocyte mitochondria. Thus NAD(P)H may operate directly as an intracellular antioxidant, as long as it is regenerated. At cell-injurious concentrations of the oxidant, however, NAD(P)H depletion may be the event that triggers cell death.
Similar articles
-
Petrat F, Pindiur S, Kirsch M, de Groot H. Petrat F, et al. Arch Biochem Biophys. 2003 Apr 15;412(2):207-15. doi: 10.1016/s0003-9861(03)00063-8. Arch Biochem Biophys. 2003. PMID: 12667484
-
Nieminen AL, Byrne AM, Herman B, Lemasters JJ. Nieminen AL, et al. Am J Physiol. 1997 Apr;272(4 Pt 1):C1286-94. doi: 10.1152/ajpcell.1997.272.4.C1286. Am J Physiol. 1997. PMID: 9142854
-
Nieminen AL, Saylor AK, Tesfai SA, Herman B, Lemasters JJ. Nieminen AL, et al. Biochem J. 1995 Apr 1;307 ( Pt 1)(Pt 1):99-106. doi: 10.1042/bj3070099. Biochem J. 1995. PMID: 7718000 Free PMC article.
-
Koretsky AP, Balaban RS. Koretsky AP, et al. Biochim Biophys Acta. 1987 Oct 7;893(3):398-408. doi: 10.1016/0005-2728(87)90092-2. Biochim Biophys Acta. 1987. PMID: 2888484
-
Byrne AM, Lemasters JJ, Nieminen AL. Byrne AM, et al. Hepatology. 1999 May;29(5):1523-31. doi: 10.1002/hep.510290521. Hepatology. 1999. PMID: 10216138
Cited by
-
Effects of Zinc Phthalocyanine Photodynamic Therapy on Vital Structures and Processes in Hela Cells.
Hosik J, Hosikova B, Binder S, Lenobel R, Kolarikova M, Malina L, Dilenko H, Langova K, Bajgar R, Kolarova H. Hosik J, et al. Int J Mol Sci. 2024 Oct 3;25(19):10650. doi: 10.3390/ijms251910650. Int J Mol Sci. 2024. PMID: 39408981 Free PMC article.
-
Mroz P, Pawlak A, Satti M, Lee H, Wharton T, Gali H, Sarna T, Hamblin MR. Mroz P, et al. Free Radic Biol Med. 2007 Sep 1;43(5):711-9. doi: 10.1016/j.freeradbiomed.2007.05.005. Epub 2007 May 10. Free Radic Biol Med. 2007. PMID: 17664135 Free PMC article.
-
Mitochondrial localization of reactive oxygen species by dihydrofluorescein probes.
Diaz G, Liu S, Isola R, Diana A, Falchi AM. Diaz G, et al. Histochem Cell Biol. 2003 Oct;120(4):319-25. doi: 10.1007/s00418-003-0566-8. Epub 2003 Sep 20. Histochem Cell Biol. 2003. PMID: 14574587
-
Strand MK, Stuart GR, Longley MJ, Graziewicz MA, Dominick OC, Copeland WC. Strand MK, et al. Eukaryot Cell. 2003 Aug;2(4):809-20. doi: 10.1128/EC.2.4.809-820.2003. Eukaryot Cell. 2003. PMID: 12912900 Free PMC article.
-
Halliwell B, Whiteman M. Halliwell B, et al. Br J Pharmacol. 2004 May;142(2):231-55. doi: 10.1038/sj.bjp.0705776. Br J Pharmacol. 2004. PMID: 15155533 Free PMC article. Review.