The production of biocatalysts and biomolecules from extremophiles - PubMed
Review
The production of biocatalysts and biomolecules from extremophiles
Chiara Schiraldi et al. Trends Biotechnol. 2002 Dec.
Abstract
The discovery of life in seemingly prohibitive environments continues to challenge conventional concepts of the growth-limiting conditions of many cellular organisms. The diversity of extremophiles has barely been tapped -estimates generally agreeing that <1% of the microorganisms in the environment have been cultivated in pure cultures to date. The production of extremophilic biomass is very important to provide sufficient material for enzyme and biomolecule isolation and characterization, eventually revealing particular features of industrial interest. Hence, special equipment and custom-tailored processes have been developed and are currently under evaluation for the improvement of fermentation productivity. Despite the remarkable opportunities that these uncommon organisms present for biotechnological applications only few instances can be reported for actual exploitation. This lack of progress from the research findings at a laboratory-scale to the actual development of pilot and large-scale production is correlated with the difficulties encountered in extremophile cultivations. Here, we report recent achievements in the production of biomass and related enzymes and biomolecules from extremophile sources, especially focusing on the application of novel fermentation strategies.
Similar articles
-
Upflow anaerobic sludge blanket reactor--a review.
Bal AS, Dhagat NN. Bal AS, et al. Indian J Environ Health. 2001 Apr;43(2):1-82. Indian J Environ Health. 2001. PMID: 12397675 Review.
-
Tikhomirova TS, Taraskevich MS, Ponomarenko OV. Tikhomirova TS, et al. Appl Microbiol Biotechnol. 2018 Sep;102(17):7293-7308. doi: 10.1007/s00253-018-9194-z. Epub 2018 Jul 2. Appl Microbiol Biotechnol. 2018. PMID: 29968035 Review.
-
Carbohydrates for fermentation.
Peters D. Peters D. Biotechnol J. 2006 Jul-Aug;1(7-8):806-14. doi: 10.1002/biot.200600041. Biotechnol J. 2006. PMID: 16937414 Review.
-
Varela MM, van Aken HM, Sintes E, Herndl GJ. Varela MM, et al. Environ Microbiol. 2008 Jan;10(1):110-24. doi: 10.1111/j.1462-2920.2007.01437.x. Environ Microbiol. 2008. PMID: 18211271
Cited by
-
Mainka T, Herwig C, Pflügl S. Mainka T, et al. Front Bioeng Biotechnol. 2022 Apr 19;10:896576. doi: 10.3389/fbioe.2022.896576. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 35519624 Free PMC article.
-
Sayeh R, Birrien JL, Alain K, Barbier G, Hamdi M, Prieur D. Sayeh R, et al. Extremophiles. 2010 Nov;14(6):501-14. doi: 10.1007/s00792-010-0327-2. Epub 2010 Sep 11. Extremophiles. 2010. PMID: 20835839
-
Rastogi G, Muppidi GL, Gurram RN, Adhikari A, Bischoff KM, Hughes SR, Apel WA, Bang SS, Dixon DJ, Sani RK. Rastogi G, et al. J Ind Microbiol Biotechnol. 2009 Apr;36(4):585-98. doi: 10.1007/s10295-009-0528-9. Epub 2009 Feb 3. J Ind Microbiol Biotechnol. 2009. PMID: 19189143
-
Thermus thermophilus as a Source of Thermostable Lipolytic Enzymes.
López-López O, Cerdán ME, González-Siso MI. López-López O, et al. Microorganisms. 2015 Nov 4;3(4):792-808. doi: 10.3390/microorganisms3040792. Microorganisms. 2015. PMID: 27682117 Free PMC article. Review.
-
Darnal S, Patial V, Kumar V, Kumar S, Kumar V, Padwad YS, Singh D. Darnal S, et al. AMB Express. 2023 Feb 24;13(1):22. doi: 10.1186/s13568-023-01521-2. AMB Express. 2023. PMID: 36828987 Free PMC article.