Motifs, modules and games in bacteria - PubMed
Review
Motifs, modules and games in bacteria
Denise M Wolf et al. Curr Opin Microbiol. 2003 Apr.
Abstract
Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment. Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.
Similar articles
-
Ma HW, Buer J, Zeng AP. Ma HW, et al. BMC Bioinformatics. 2004 Dec 16;5:199. doi: 10.1186/1471-2105-5-199. BMC Bioinformatics. 2004. PMID: 15603590 Free PMC article.
-
Conlin PL, Chandler JR, Kerr B. Conlin PL, et al. Curr Opin Microbiol. 2014 Oct;21:35-44. doi: 10.1016/j.mib.2014.09.004. Epub 2014 Sep 29. Curr Opin Microbiol. 2014. PMID: 25271120 Review.
-
Building the cellular puzzle: control in multi-level reaction networks.
Hofmeyr JH, Westerhoff HV. Hofmeyr JH, et al. J Theor Biol. 2001 Feb;208(3):261-85. doi: 10.1006/jtbi.2000.2216. J Theor Biol. 2001. PMID: 11207090
-
Non-transcriptional regulatory processes shape transcriptional network dynamics.
Ray JC, Tabor JJ, Igoshin OA. Ray JC, et al. Nat Rev Microbiol. 2011 Oct 11;9(11):817-28. doi: 10.1038/nrmicro2667. Nat Rev Microbiol. 2011. PMID: 21986901 Free PMC article. Review.
-
Simulation of prokaryotic genetic circuits.
McAdams HH, Arkin A. McAdams HH, et al. Annu Rev Biophys Biomol Struct. 1998;27:199-224. doi: 10.1146/annurev.biophys.27.1.199. Annu Rev Biophys Biomol Struct. 1998. PMID: 9646867 Review.
Cited by
-
Bacterial adaptation through distributed sensing of metabolic fluxes.
Kotte O, Zaugg JB, Heinemann M. Kotte O, et al. Mol Syst Biol. 2010;6:355. doi: 10.1038/msb.2010.10. Epub 2010 Mar 9. Mol Syst Biol. 2010. PMID: 20212527 Free PMC article.
-
Ma HW, Buer J, Zeng AP. Ma HW, et al. BMC Bioinformatics. 2004 Dec 16;5:199. doi: 10.1186/1471-2105-5-199. BMC Bioinformatics. 2004. PMID: 15603590 Free PMC article.
-
Transcriptional dynamics of the embryonic stem cell switch.
Chickarmane V, Troein C, Nuber UA, Sauro HM, Peterson C. Chickarmane V, et al. PLoS Comput Biol. 2006 Sep 15;2(9):e123. doi: 10.1371/journal.pcbi.0020123. Epub 2006 Jul 31. PLoS Comput Biol. 2006. PMID: 16978048 Free PMC article.
-
Somvanshi PR, Venkatesh KV. Somvanshi PR, et al. Syst Synth Biol. 2014 Mar;8(1):99-116. doi: 10.1007/s11693-013-9125-3. Epub 2013 Sep 18. Syst Synth Biol. 2014. PMID: 24592295 Free PMC article.
-
Development of an artificial cell, from self-organization to computation and self-reproduction.
Noireaux V, Maeda YT, Libchaber A. Noireaux V, et al. Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3473-80. doi: 10.1073/pnas.1017075108. Epub 2011 Feb 11. Proc Natl Acad Sci U S A. 2011. PMID: 21317359 Free PMC article.