Detection of gene duplications and block duplications in eukaryotic genomes - PubMed
- ️Invalid Date
Affiliations
- PMID: 12836682
Review
Detection of gene duplications and block duplications in eukaryotic genomes
Wen-Hsiung Li et al. J Struct Funct Genomics. 2003.
Abstract
Several eukaryotic genomes have been completely sequenced and this provides an opportunity to investigate the extent and characteristics (e.g., single gene duplication, block duplication, etc.) of gene duplication in a genome. Detecting duplicate genes in a genome, however, is not a simple problem because of several complications such as domain shuffling, the existence of isoforms derived from alternative splicing, and annotational errors in the databases. We describe a method for overcoming these difficulties and the extents of gene duplication in the genomes of Drosophila melanogaster, Caenorhabditis elegans, and yeast inferred from this method. We also describe a method for detecting block duplications in a genome. Application of this method showed that block duplication is a common phenomenon in both yeast and nematode. The patterns of block duplication in the two species are, however, markedly different. Yeast shows much more extensive block duplication than nematode, with some chromosomes having more than 40% of the duplications derived from block duplications. Moreover, in yeast the majority of block duplications occurred between chromosomes, while in nematode most block duplications occurred within chromosomes.
Similar articles
-
Patterns of gene duplication in Saccharomyces cerevisiae and Caenorhabditis elegans.
Cavalcanti AR, Ferreira R, Gu Z, Li WH. Cavalcanti AR, et al. J Mol Evol. 2003 Jan;56(1):28-37. doi: 10.1007/s00239-002-2377-2. J Mol Evol. 2003. PMID: 12569420
-
Extent of gene duplication in the genomes of Drosophila, nematode, and yeast.
Gu Z, Cavalcanti A, Chen FC, Bouman P, Li WH. Gu Z, et al. Mol Biol Evol. 2002 Mar;19(3):256-62. doi: 10.1093/oxfordjournals.molbev.a004079. Mol Biol Evol. 2002. PMID: 11861885
-
Pattern and timing of gene duplication in animal genomes.
Friedman R, Hughes AL. Friedman R, et al. Genome Res. 2001 Nov;11(11):1842-7. doi: 10.1101/gr.200601. Genome Res. 2001. PMID: 11691848 Free PMC article.
-
Birth and death of duplicated genes in completely sequenced eukaryotes.
Wagner A. Wagner A. Trends Genet. 2001 May;17(5):237-9. doi: 10.1016/s0168-9525(01)02243-0. Trends Genet. 2001. PMID: 11335019 Review.
-
The 2R hypothesis and the human genome sequence.
Hokamp K, McLysaght A, Wolfe KH. Hokamp K, et al. J Struct Funct Genomics. 2003;3(1-4):95-110. J Struct Funct Genomics. 2003. PMID: 12836689 Review.
Cited by
-
dbDNV: a resource of duplicated gene nucleotide variants in human genome.
Ho MR, Tsai KW, Chen CH, Lin WC. Ho MR, et al. Nucleic Acids Res. 2011 Jan;39(Database issue):D920-5. doi: 10.1093/nar/gkq1197. Epub 2010 Nov 21. Nucleic Acids Res. 2011. PMID: 21097891 Free PMC article.
-
Detecting long tandem duplications in genomic sequences.
Audemard E, Schiex T, Faraut T. Audemard E, et al. BMC Bioinformatics. 2012 May 8;13:83. doi: 10.1186/1471-2105-13-83. BMC Bioinformatics. 2012. PMID: 22568762 Free PMC article.
-
The origins of polypeptide domains.
Schmidt EE, Davies CJ. Schmidt EE, et al. Bioessays. 2007 Mar;29(3):262-70. doi: 10.1002/bies.20546. Bioessays. 2007. PMID: 17295290 Free PMC article. Review.
-
Genomic evolution of MHC class I region in primates.
Fukami-Kobayashi K, Shiina T, Anzai T, Sano K, Yamazaki M, Inoko H, Tateno Y. Fukami-Kobayashi K, et al. Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9230-4. doi: 10.1073/pnas.0500770102. Epub 2005 Jun 20. Proc Natl Acad Sci U S A. 2005. PMID: 15967992 Free PMC article.
-
Automated identification of conserved synteny after whole-genome duplication.
Catchen JM, Conery JS, Postlethwait JH. Catchen JM, et al. Genome Res. 2009 Aug;19(8):1497-505. doi: 10.1101/gr.090480.108. Epub 2009 May 22. Genome Res. 2009. PMID: 19465509 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases