The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase. Homology modeling, cofactor docking, and molecular dynamics simulation studies - PubMed
- ️Thu Jan 01 2004
. 2004 Mar 5;279(10):9424-31.
doi: 10.1074/jbc.M311876200. Epub 2003 Dec 12.
Affiliations
- PMID: 14672929
- DOI: 10.1074/jbc.M311876200
Free article
The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase. Homology modeling, cofactor docking, and molecular dynamics simulation studies
Kayode S Oyedotun et al. J Biol Chem. 2004.
Free article
Abstract
Succinate dehydrogenases and fumarate reductases are complex mitochondrial or bacterial respiratory chain proteins with remarkably similar structures and functions. Succinate dehydrogenase oxidizes succinate and reduces ubiquinone using a flavin adenine dinucleotide cofactor and iron-sulfur clusters to transport electrons. A model of the quaternary structure of the tetrameric Saccharomyces cerevisiae succinate dehydrogenase was constructed based on the crystal structures of the Escherichia coli succinate dehydrogenase, the E. coli fumarate reductase, and the Wolinella succinogenes fumarate reductase. One FAD and three iron-sulfur clusters were docked into the Sdh1p and Sdh2p catalytic dimer. One b-type heme and two ubiquinone or inhibitor analog molecules were docked into the Sdh3p and Sdh4p membrane dimer. The model is consistent with numerous experimental observations. The calculated free energies of inhibitor binding are in excellent agreement with the experimentally determined inhibitory constants. Functionally important residues identified by mutagenesis of the SDH3 and SDH4 genes are located near the two proposed quinone-binding sites, which are separated by the heme. The proximal quinone-binding site, located nearest the catalytic dimer, has a considerably more polar environment than the distal site. Alternative low energy conformations of the membrane subunits were explored in a molecular dynamics simulation of the dimer embedded in a phospholipid bilayer. The simulation offers insight into why Sdh4p Cys-78 may be serving as the second axial ligand for the heme instead of a histidine residue. We discuss the possible roles of heme and of the two quinone-binding sites in electron transport.
Similar articles
-
Oyedotun KS, Yau PF, Lemire BD. Oyedotun KS, et al. J Biol Chem. 2004 Mar 5;279(10):9432-9. doi: 10.1074/jbc.M311877200. Epub 2003 Dec 12. J Biol Chem. 2004. PMID: 14672930
-
The Saccharomyces cerevisiae succinate dehydrogenase does not require heme for ubiquinone reduction.
Oyedotun KS, Sit CS, Lemire BD. Oyedotun KS, et al. Biochim Biophys Acta. 2007 Dec;1767(12):1436-45. doi: 10.1016/j.bbabio.2007.09.008. Epub 2007 Sep 29. Biochim Biophys Acta. 2007. PMID: 18028869
-
Oyedotun KS, Lemire BD. Oyedotun KS, et al. J Biol Chem. 1999 Aug 20;274(34):23956-62. doi: 10.1074/jbc.274.34.23956. J Biol Chem. 1999. PMID: 10446163
-
Succinate: quinone oxidoreductases: new insights from X-ray crystal structures.
Lancaster CR, Kröger A. Lancaster CR, et al. Biochim Biophys Acta. 2000 Aug 15;1459(2-3):422-31. doi: 10.1016/s0005-2728(00)00180-8. Biochim Biophys Acta. 2000. PMID: 11004459 Review.
-
The Saccharomyces cerevisiae mitochondrial succinate:ubiquinone oxidoreductase.
Lemire BD, Oyedotun KS. Lemire BD, et al. Biochim Biophys Acta. 2002 Jan 17;1553(1-2):102-16. doi: 10.1016/s0005-2728(01)00229-8. Biochim Biophys Acta. 2002. PMID: 11803020 Review.
Cited by
-
Analysis of transcriptional profiles of Saccharomyces cerevisiae exposed to bisphenol A.
Bereketoglu C, Arga KY, Eraslan S, Mertoglu B. Bereketoglu C, et al. Curr Genet. 2017 May;63(2):253-274. doi: 10.1007/s00294-016-0633-z. Epub 2016 Jul 26. Curr Genet. 2017. PMID: 27460658
-
Xekouki P, Stratakis CA. Xekouki P, et al. Endocr Relat Cancer. 2012 Oct 30;19(6):C33-40. doi: 10.1530/ERC-12-0118. Print 2012 Dec. Endocr Relat Cancer. 2012. PMID: 22889736 Free PMC article.
-
A systems biology approach to investigate the antimicrobial activity of oleuropein.
Li X, Liu Y, Jia Q, LaMacchia V, O'Donoghue K, Huang Z. Li X, et al. J Ind Microbiol Biotechnol. 2016 Dec;43(12):1705-1717. doi: 10.1007/s10295-016-1841-8. Epub 2016 Oct 22. J Ind Microbiol Biotechnol. 2016. PMID: 27771782
-
Choi SB, Normi YM, Wahab HA. Choi SB, et al. Protein J. 2009 Dec;28(9-10):415-27. doi: 10.1007/s10930-009-9209-9. Protein J. 2009. PMID: 19859792 Free PMC article.
-
Cross-talk between mitochondrial malate dehydrogenase and the cytochrome bc1 complex.
Wang Q, Yu L, Yu CA. Wang Q, et al. J Biol Chem. 2010 Apr 2;285(14):10408-14. doi: 10.1074/jbc.M109.085787. Epub 2010 Jan 14. J Biol Chem. 2010. PMID: 20075069 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases