Myosin-1c, the hair cell's adaptation motor - PubMed
Review
Myosin-1c, the hair cell's adaptation motor
Peter G Gillespie et al. Annu Rev Physiol. 2004.
Abstract
Given their prominent actin-rich subcellular specializations, it is no surprise that mechanosensitive hair cells of the inner ear exploit myosin molecules-the only known actin-dependent molecular motors-to carry out exotic but essential tasks. Recent experiments have confirmed that an unconventional myosin isozyme, myosin-1c, is a component of the hair cell's adaptation-motor complex. This complex carries out slow adaptation, provides tension to sensitize transduction channels, and may participate in assembly of the transduction apparatus. This review focuses on the detailed operation of the adaptation motor and the functional consequences of the incorporation of this specific myosin isozyme into the motor complex.
Similar articles
-
Myosin I and adaptation of mechanical transduction by the inner ear.
Gillespie PG. Gillespie PG. Philos Trans R Soc Lond B Biol Sci. 2004 Dec 29;359(1452):1945-51. doi: 10.1098/rstb.2004.1564. Philos Trans R Soc Lond B Biol Sci. 2004. PMID: 15647170 Free PMC article. Review.
-
Transduction and adaptation in sensory hair cells of the mammalian vestibular system.
Colclasure JC, Holt JR. Colclasure JC, et al. Gravit Space Biol Bull. 2003 Jun;16(2):61-70. Gravit Space Biol Bull. 2003. PMID: 12959133 Review.
-
Fast adaptation in vestibular hair cells requires myosin-1c activity.
Stauffer EA, Scarborough JD, Hirono M, Miller ED, Shah K, Mercer JA, Holt JR, Gillespie PG. Stauffer EA, et al. Neuron. 2005 Aug 18;47(4):541-53. doi: 10.1016/j.neuron.2005.07.024. Neuron. 2005. PMID: 16102537 Free PMC article.
-
Two adaptation processes in auditory hair cells together can provide an active amplifier.
Vilfan A, Duke T. Vilfan A, et al. Biophys J. 2003 Jul;85(1):191-203. doi: 10.1016/S0006-3495(03)74465-8. Biophys J. 2003. PMID: 12829475 Free PMC article.
-
Nonlinear calcium ion waves along actin filaments control active hair-bundle motility.
Tuszynski JA, Sataric MV, Sekulic DL, Sataric BM, Zdravkovic S. Tuszynski JA, et al. Biosystems. 2018 Nov;173:181-190. doi: 10.1016/j.biosystems.2018.08.006. Epub 2018 Sep 1. Biosystems. 2018. PMID: 30179640
Cited by
-
Arif E, Sharma P, Solanki A, Mallik L, Rathore YS, Twal WO, Nath SK, Gandhi D, Holzman LB, Ostap EM, Ashish, Nihalani D. Arif E, et al. Mol Cell Biol. 2016 May 16;36(11):1639-54. doi: 10.1128/MCB.00020-16. Print 2016 Jun 1. Mol Cell Biol. 2016. PMID: 27044863 Free PMC article.
-
Okumura T, Sasamura T, Inatomi M, Hozumi S, Nakamura M, Hatori R, Taniguchi K, Nakazawa N, Suzuki E, Maeda R, Yamakawa T, Matsuno K. Okumura T, et al. Genetics. 2015 Apr;199(4):1183-99. doi: 10.1534/genetics.115.174698. Epub 2015 Feb 6. Genetics. 2015. PMID: 25659376 Free PMC article.
-
Adamek N, Geeves MA, Coluccio LM. Adamek N, et al. Cell Mol Life Sci. 2011 Jan;68(1):139-50. doi: 10.1007/s00018-010-0448-x. Epub 2010 Jul 17. Cell Mol Life Sci. 2011. PMID: 20640478 Free PMC article.
-
Plasticity in membrane cholesterol contributes toward electrical maturation of hearing.
Levic S, Yamoah EN. Levic S, et al. J Biol Chem. 2011 Feb 18;286(7):5768-73. doi: 10.1074/jbc.M110.186486. Epub 2010 Dec 16. J Biol Chem. 2011. PMID: 21163952 Free PMC article.
-
Harmonin mutations cause mechanotransduction defects in cochlear hair cells.
Grillet N, Xiong W, Reynolds A, Kazmierczak P, Sato T, Lillo C, Dumont RA, Hintermann E, Sczaniecka A, Schwander M, Williams D, Kachar B, Gillespie PG, Müller U. Grillet N, et al. Neuron. 2009 May 14;62(3):375-87. doi: 10.1016/j.neuron.2009.04.006. Neuron. 2009. PMID: 19447093 Free PMC article.