Prediction and functional analysis of native disorder in proteins from the three kingdoms of life - PubMed
- ️Thu Jan 01 2004
Prediction and functional analysis of native disorder in proteins from the three kingdoms of life
J J Ward et al. J Mol Biol. 2004.
Abstract
An automatic method for recognizing natively disordered regions from amino acid sequence is described and benchmarked against predictors that were assessed at the latest critical assessment of techniques for protein structure prediction (CASP) experiment. The method attains a Wilcoxon score of 90.0, which represents a statistically significant improvement on the methods evaluated on the same targets at CASP. The classifier, DISOPRED2, was used to estimate the frequency of native disorder in several representative genomes from the three kingdoms of life. Putative, long (>30 residue) disordered segments are found to occur in 2.0% of archaean, 4.2% of eubacterial and 33.0% of eukaryotic proteins. The function of proteins with long predicted regions of disorder was investigated using the gene ontology annotations supplied with the Saccharomyces genome database. The analysis of the yeast proteome suggests that proteins containing disorder are often located in the cell nucleus and are involved in the regulation of transcription and cell signalling. The results also indicate that native disorder is associated with the molecular functions of kinase activity and nucleic acid binding.
Similar articles
-
Prevalent structural disorder in E. coli and S. cerevisiae proteomes.
Tompa P, Dosztanyi Z, Simon I. Tompa P, et al. J Proteome Res. 2006 Aug;5(8):1996-2000. doi: 10.1021/pr0600881. J Proteome Res. 2006. PMID: 16889422
-
Prediction of unfolded segments in a protein sequence based on amino acid composition.
Coeytaux K, Poupon A. Coeytaux K, et al. Bioinformatics. 2005 May 1;21(9):1891-900. doi: 10.1093/bioinformatics/bti266. Epub 2005 Jan 18. Bioinformatics. 2005. PMID: 15657106
-
Vucetic S, Brown CJ, Dunker AK, Obradovic Z. Vucetic S, et al. Proteins. 2003 Sep 1;52(4):573-84. doi: 10.1002/prot.10437. Proteins. 2003. PMID: 12910457
-
Fink AL. Fink AL. Curr Opin Struct Biol. 2005 Feb;15(1):35-41. doi: 10.1016/j.sbi.2005.01.002. Curr Opin Struct Biol. 2005. PMID: 15718131 Review.
-
Limitations of induced folding in molecular recognition by intrinsically disordered proteins.
Hazy E, Tompa P. Hazy E, et al. Chemphyschem. 2009 Jul 13;10(9-10):1415-9. doi: 10.1002/cphc.200900205. Chemphyschem. 2009. PMID: 19462392 Review.
Cited by
-
Omidi A, Møller MH, Malhis N, Bui JM, Gsponer J. Omidi A, et al. Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2406407121. doi: 10.1073/pnas.2406407121. Epub 2024 Oct 24. Proc Natl Acad Sci U S A. 2024. PMID: 39446390
-
Mishra PM, Verma NC, Rao C, Uversky VN, Nandi CK. Mishra PM, et al. Prog Mol Biol Transl Sci. 2020;174:1-78. doi: 10.1016/bs.pmbts.2020.03.001. Epub 2020 Apr 2. Prog Mol Biol Transl Sci. 2020. PMID: 32828463 Free PMC article. Review.
-
A universal trend among proteomes indicates an oily last common ancestor.
Mannige RV, Brooks CL, Shakhnovich EI. Mannige RV, et al. PLoS Comput Biol. 2012;8(12):e1002839. doi: 10.1371/journal.pcbi.1002839. Epub 2012 Dec 27. PLoS Comput Biol. 2012. PMID: 23300421 Free PMC article.
-
Jiao X, Di Sante G, Casimiro MC, Tantos A, Ashton AW, Li Z, Quach Y, Bhargava D, Di Rocco A, Pupo C, Crosariol M, Lazar T, Tompa P, Wang C, Yu Z, Zhang Z, Aldaaysi K, Vadlamudi R, Mann M, Skordalakes E, Kossenkov A, Du Y, Pestell RG. Jiao X, et al. Oncogenesis. 2024 Jan 8;13(1):4. doi: 10.1038/s41389-023-00502-1. Oncogenesis. 2024. PMID: 38191593 Free PMC article.
-
Zea DJ, Monzon AM, Gonzalez C, Fornasari MS, Tosatto SC, Parisi G. Zea DJ, et al. Protein Sci. 2016 Jun;25(6):1138-46. doi: 10.1002/pro.2931. Epub 2016 Apr 18. Protein Sci. 2016. PMID: 27038125 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases