The genomic rate of adaptive amino acid substitution in Drosophila - PubMed
. 2004 Jul;21(7):1350-60.
doi: 10.1093/molbev/msh134. Epub 2004 Mar 24.
Affiliations
- PMID: 15044594
- DOI: 10.1093/molbev/msh134
The genomic rate of adaptive amino acid substitution in Drosophila
Nicolas Bierne et al. Mol Biol Evol. 2004 Jul.
Abstract
The proportion of amino acid substitutions driven by adaptive evolution can potentially be estimated from polymorphism and divergence data by an extension of the McDonald-Kreitman test. We have developed a maximum-likelihood method to do this and have applied our method to several data sets from three Drosophila species: D. melanogaster, D. simulans, and D. yakuba. The estimated number of adaptive substitutions per codon is not uniformly distributed among genes, but follows a leptokurtic distribution. However, the proportion of amino acid substitutions fixed by adaptive evolution seems to be remarkably constant across the genome (i.e., the proportion of amino acid substitutions that are adaptive appears to be the same in fast-evolving and slow-evolving genes; fast-evolving genes have higher numbers of both adaptive and neutral substitutions). Our estimates do not seem to be significantly biased by selection on synonymous codon use or by the assumption of independence among sites. Nevertheless, an accurate estimate is hampered by the existence of slightly deleterious mutations and variations in effective population size. The analysis of several Drosophila data sets suggests that approximately 25% +/- 20% of amino acid substitutions were driven by positive selection in the divergence between D. simulans and D. yakuba.
Similar articles
-
Adaptive protein evolution in Drosophila.
Smith NG, Eyre-Walker A. Smith NG, et al. Nature. 2002 Feb 28;415(6875):1022-4. doi: 10.1038/4151022a. Nature. 2002. PMID: 11875568
-
Connallon T. Connallon T. Mol Biol Evol. 2007 Nov;24(11):2566-72. doi: 10.1093/molbev/msm199. Epub 2007 Sep 19. Mol Biol Evol. 2007. PMID: 17884828
-
The McDonald-Kreitman test and slightly deleterious mutations.
Charlesworth J, Eyre-Walker A. Charlesworth J, et al. Mol Biol Evol. 2008 Jun;25(6):1007-15. doi: 10.1093/molbev/msn005. Epub 2008 Jan 14. Mol Biol Evol. 2008. PMID: 18195052
-
Comparative genomics and the study of evolution by natural selection.
Ellegren H. Ellegren H. Mol Ecol. 2008 Nov;17(21):4586-96. doi: 10.1111/j.1365-294X.2008.03954.x. Mol Ecol. 2008. PMID: 19140982 Review.
-
Williford A, Comeron JM. Williford A, et al. J Hered. 2010 Mar-Apr;101 Suppl 1:S127-34. doi: 10.1093/jhered/esq012. J Hered. 2010. PMID: 20421321 Review.
Cited by
-
Keightley PD, Eyre-Walker A. Keightley PD, et al. J Mol Evol. 2012 Feb;74(1-2):61-8. doi: 10.1007/s00239-012-9488-1. Epub 2012 Feb 12. J Mol Evol. 2012. PMID: 22327123
-
Harrang E, Lapègue S, Morga B, Bierne N. Harrang E, et al. G3 (Bethesda). 2013 Feb;3(2):333-41. doi: 10.1534/g3.112.005181. Epub 2013 Feb 1. G3 (Bethesda). 2013. PMID: 23390609 Free PMC article.
-
Jovelin R, Phillips PC. Jovelin R, et al. Mol Genet Genomics. 2005 Jun;273(4):299-310. doi: 10.1007/s00438-004-1105-6. Epub 2005 Apr 27. Mol Genet Genomics. 2005. PMID: 15856303
-
Inferring the distribution of selective effects from a time inhomogeneous model.
Amei A, Zhou S. Amei A, et al. PLoS One. 2019 Jan 18;14(1):e0194709. doi: 10.1371/journal.pone.0194709. eCollection 2019. PLoS One. 2019. PMID: 30657757 Free PMC article.
-
Human and non-human primate genomes share hotspots of positive selection.
Enard D, Depaulis F, Roest Crollius H. Enard D, et al. PLoS Genet. 2010 Feb 5;6(2):e1000840. doi: 10.1371/journal.pgen.1000840. PLoS Genet. 2010. PMID: 20140238 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases