Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes - PubMed
Comparative Study
Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes
Ruslan Kalendar et al. Genetics. 2004 Mar.
Abstract
Retroviruses and LTR retrotransposons comprise two long-terminal repeats (LTRs) bounding a central domain that encodes the products needed for reverse transcription, packaging, and integration into the genome. We describe a group of retrotransposons in 13 species and four genera of the grass tribe Triticeae, including barley, with long, approximately 4.4-kb LTRs formerly called Sukkula elements. The approximately 3.5-kb central domains include reverse transcriptase priming sites and are conserved in sequence but contain no open reading frames encoding typical retrotransposon proteins. However, they specify well-conserved RNA secondary structures. These features describe a novel group of elements, called LARDs or large retrotransposon derivatives (LARDs). These appear to be members of the gypsy class of LTR retrotransposons. Although apparently nonautonomous, LARDs appear to be transcribed and can be recombinationally mapped due to the polymorphism of their insertion sites. They are dispersed throughout the genome in an estimated 1.3 x 10(3) full-length copies and 1.16 x 10(4) solo LTRs, indicating frequent recombinational loss of internal domains as demonstrated also for the BARE-1 barley retrotransposon.
Similar articles
-
Structure, functionality, and evolution of the BARE-1 retrotransposon of barley.
Vicient CM, Kalendar R, Anamthawat-Jónsson K, Schulman AH. Vicient CM, et al. Genetica. 1999;107(1-3):53-63. Genetica. 1999. PMID: 10952197
-
LINEs and gypsy-like retrotransposons in Hordeum species.
Vershinin AV, Druka A, Alkhimova AG, Kleinhofs A, Heslop-Harrison JS. Vershinin AV, et al. Plant Mol Biol. 2002 May;49(1):1-14. doi: 10.1023/a:1014469830680. Plant Mol Biol. 2002. PMID: 12008894
-
BARE-1 insertion site preferences and evolutionary conservation of RNA and cDNA processing sites.
Suoniemi A, Schmidt D, Schulman AH. Suoniemi A, et al. Genetica. 1997;100(1-3):219-30. Genetica. 1997. PMID: 9440275
-
A movable feast: diverse retrotransposons and their contribution to barley genome dynamics.
Schulman AH, Kalendar R. Schulman AH, et al. Cytogenet Genome Res. 2005;110(1-4):598-605. doi: 10.1159/000084993. Cytogenet Genome Res. 2005. PMID: 16093713 Review.
-
Gene-containing regions of wheat and the other grass genomes.
Sandhu D, Gill KS. Sandhu D, et al. Plant Physiol. 2002 Mar;128(3):803-11. doi: 10.1104/pp.010745. Plant Physiol. 2002. PMID: 11891237 Free PMC article. Review.
Cited by
-
Mokhtar MM, El Allali A. Mokhtar MM, et al. Front Plant Sci. 2023 Sep 20;14:1237426. doi: 10.3389/fpls.2023.1237426. eCollection 2023. Front Plant Sci. 2023. PMID: 37810401 Free PMC article.
-
Wicker T, Narechania A, Sabot F, Stein J, Vu GT, Graner A, Ware D, Stein N. Wicker T, et al. BMC Genomics. 2008 Oct 31;9:518. doi: 10.1186/1471-2164-9-518. BMC Genomics. 2008. PMID: 18976483 Free PMC article.
-
Orozco-Arias S, Liu J, Tabares-Soto R, Ceballos D, Silva Domingues D, Garavito A, Ming R, Guyot R. Orozco-Arias S, et al. Biology (Basel). 2018 May 25;7(2):32. doi: 10.3390/biology7020032. Biology (Basel). 2018. PMID: 29799487 Free PMC article.
-
Characterization of repetitive DNA landscape in wheat homeologous group 4 chromosomes.
Garbus I, Romero JR, Valarik M, Vanžurová H, Karafiátová M, Cáccamo M, Doležel J, Tranquilli G, Helguera M, Echenique V. Garbus I, et al. BMC Genomics. 2015 May 12;16(1):375. doi: 10.1186/s12864-015-1579-0. BMC Genomics. 2015. PMID: 25962417 Free PMC article.
-
Voronova A, Rendón-Anaya M, Ingvarsson P, Kalendar R, Ruņģis D. Voronova A, et al. Genes (Basel). 2020 Oct 16;11(10):1216. doi: 10.3390/genes11101216. Genes (Basel). 2020. PMID: 33081418 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources