Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases - PubMed
- ️Thu Jan 01 2004
Comparative Study
. 2004 Aug 3;43(30):9877-87.
doi: 10.1021/bi049592e.
Affiliations
- PMID: 15274642
- DOI: 10.1021/bi049592e
Comparative Study
Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases
Margie T Borra et al. Biochemistry. 2004.
Abstract
The Silent information regulator 2 (Sir2) family of enzymes consists of NAD(+)-dependent histone/protein deacetylases that tightly couple the hydrolysis of NAD(+) and the deacetylation of an acetylated substrate to form nicotinamide, the deacetylated product, and the novel metabolite O-acetyl-ADP-ribose (OAADPR). In this paper, we analyzed the substrate specificity of the yeast Sir2 (ySir2), the yeast HST2, and the human SIRT2 homologues toward various monoacetylated histone H3 and H4 peptides, determined the basic kinetic mechanism, and resolved individual chemical steps of the Sir2 reaction. Using steady-state kinetic analysis, we have shown that ySir2, HST2, and SIRT2 exhibit varying catalytic efficiencies and display a preference among the monoacetylated peptide substrates. Bisubstrate kinetic analysis indicates that Sir2 enzymes follow a sequential mechanism, where both the acetylated substrate and NAD(+) must bind to form a ternary complex, prior to any catalytic step. Using rapid-kinetic analysis, we have shown that after ternary complex formation, nicotinamide cleavage occurs first, followed by the transfer of the acetyl group from the donor substrate to the ADP-ribose portion of NAD(+) to form OAADPr and the deacetylated product. Product and dead-end inhibition analyses revealed that nicotinamide is the first product released followed by random release of OAADPr and the deacetylated product.
Similar articles
-
Role of NAD(+) in the deacetylase activity of the SIR2-like proteins.
Landry J, Slama JT, Sternglanz R. Landry J, et al. Biochem Biophys Res Commun. 2000 Nov 30;278(3):685-90. doi: 10.1006/bbrc.2000.3854. Biochem Biophys Res Commun. 2000. PMID: 11095969
-
Avalos JL, Bever KM, Wolberger C. Avalos JL, et al. Mol Cell. 2005 Mar 18;17(6):855-68. doi: 10.1016/j.molcel.2005.02.022. Mol Cell. 2005. PMID: 15780941
-
Zhao K, Harshaw R, Chai X, Marmorstein R. Zhao K, et al. Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8563-8. doi: 10.1073/pnas.0401057101. Epub 2004 May 18. Proc Natl Acad Sci U S A. 2004. PMID: 15150415 Free PMC article.
-
Structure and chemistry of the Sir2 family of NAD+-dependent histone/protein deactylases.
Marmorstein R. Marmorstein R. Biochem Soc Trans. 2004 Dec;32(Pt 6):904-9. doi: 10.1042/BST0320904. Biochem Soc Trans. 2004. PMID: 15506920 Review.
-
Quantitative assays for characterization of the Sir2 family of NAD(+)-dependent deacetylases.
Borra MT, Denu JM. Borra MT, et al. Methods Enzymol. 2004;376:171-87. doi: 10.1016/S0076-6879(03)76011-X. Methods Enzymol. 2004. PMID: 14975305 Review. No abstract available.
Cited by
-
Histone deacetylases modulate resistance to the therapy in lung cancer.
Contreras-Sanzón E, Prado-Garcia H, Romero-Garcia S, Nuñez-Corona D, Ortiz-Quintero B, Luna-Rivero C, Martínez-Cruz V, Carlos-Reyes Á. Contreras-Sanzón E, et al. Front Genet. 2022 Oct 3;13:960263. doi: 10.3389/fgene.2022.960263. eCollection 2022. Front Genet. 2022. PMID: 36263432 Free PMC article. Review.
-
Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator.
Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M, Aoubala M, McCarthy A, Appleyard V, Murray KE, Baker L, Thompson A, Mathers J, Holland SJ, Stark MJ, Pass G, Woods J, Lane DP, Westwood NJ. Lain S, et al. Cancer Cell. 2008 May;13(5):454-63. doi: 10.1016/j.ccr.2008.03.004. Cancer Cell. 2008. PMID: 18455128 Free PMC article.
-
Inhibitors of Trypanosoma cruzi Sir2 related protein 1 as potential drugs against Chagas disease.
Gaspar L, Coron RP, KongThoo Lin P, Costa DM, Perez-Cabezas B, Tavares J, Roura-Ferrer M, Ramos I, Ronin C, Major LL, Ciesielski F, Pemberton IK, MacDougall J, Ciapetti P, Smith TK, Cordeiro-da-Silva A. Gaspar L, et al. PLoS Negl Trop Dis. 2018 Jan 22;12(1):e0006180. doi: 10.1371/journal.pntd.0006180. eCollection 2018 Jan. PLoS Negl Trop Dis. 2018. PMID: 29357372 Free PMC article.
-
Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds.
Bonkowski MS, Sinclair DA. Bonkowski MS, et al. Nat Rev Mol Cell Biol. 2016 Nov;17(11):679-690. doi: 10.1038/nrm.2016.93. Epub 2016 Aug 24. Nat Rev Mol Cell Biol. 2016. PMID: 27552971 Free PMC article. Review.
-
Luu L, Dai FF, Prentice KJ, Huang X, Hardy AB, Hansen JB, Liu Y, Joseph JW, Wheeler MB. Luu L, et al. Diabetologia. 2013 Sep;56(9):2010-20. doi: 10.1007/s00125-013-2946-5. Epub 2013 Jun 20. Diabetologia. 2013. PMID: 23783352
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases