Comparative analysis of surface electrostatic potentials of carbon, boron/nitrogen and carbon/boron/nitrogen model nanotubes - PubMed
Comparative Study
doi: 10.1007/s00894-004-0202-0. Epub 2004 Oct 14.
Affiliations
- PMID: 15490284
- DOI: 10.1007/s00894-004-0202-0
Comparative Study
Comparative analysis of surface electrostatic potentials of carbon, boron/nitrogen and carbon/boron/nitrogen model nanotubes
Peter Politzer et al. J Mol Model. 2005 Feb.
Abstract
We have extended an earlier study, in which we characterized in detail the electrostatic potentials on the inner and outer surfaces of a group of carbon and B(x)N(x) model nanotubes, to include several additional ones with smaller diameters plus a new category, C(2x)B(x)N(x). The statistical features of the surface potentials are presented and analyzed for a total of 19 tubes as well as fullerene and a small model graphene. The potentials on the surfaces of the carbon systems are relatively weak and rather bland; they are much stronger and more variable for the B(x)N(x) and C(2x)B(x)N(x). A qualitative correlation with free energies of solvation indicates that the latter two categories should have considerably greater water solubilities. The inner surfaces are generally more positive than the corresponding outer ones, while both positive and negative potentials are strengthened by increasing curvature. The outsides of B(x)N(x) tubes have characteristic patterns of alternating positive and negative regions, while the insides are strongly positive. In the closed C(2x)B(x)N(x) systems, half of the C-C bonds are double-bond-like and have negative potentials above them; the adjacent rows of boron and nitrogens show the usual B(x)N(x) pattern. When the C(2x)B(x)N(x) tubes are open, with hydrogens at the ends, the surface potentials are dominated by the B+-H- and N(-)-H+ linkages.
Similar articles
-
Yang Q, Xu W, Tomita A, Kyotani T. Yang Q, et al. J Am Chem Soc. 2005 Jun 29;127(25):8956-7. doi: 10.1021/ja052357e. J Am Chem Soc. 2005. PMID: 15969565
-
Syntheses and properties of B-C-N and BN nanostructures.
Ma R, Golberg D, Bando Y, Sasaki T. Ma R, et al. Philos Trans A Math Phys Eng Sci. 2004 Oct 15;362(1823):2161-86. doi: 10.1098/rsta.2004.1434. Philos Trans A Math Phys Eng Sci. 2004. PMID: 15370476 Review.
-
Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes?
Zhao Y, Yang L, Chen S, Wang X, Ma Y, Wu Q, Jiang Y, Qian W, Hu Z. Zhao Y, et al. J Am Chem Soc. 2013 Jan 30;135(4):1201-4. doi: 10.1021/ja310566z. Epub 2013 Jan 17. J Am Chem Soc. 2013. PMID: 23317479
-
Yu SS, Zheng WT. Yu SS, et al. Nanoscale. 2010 Jul;2(7):1069-82. doi: 10.1039/c0nr00002g. Epub 2010 May 11. Nanoscale. 2010. PMID: 20648331 Review.
Cited by
-
Fluorination of BC3 nanotubes: DFT studies.
Peyghan AA, Noei M. Peyghan AA, et al. J Mol Model. 2013 Sep;19(9):3941-6. doi: 10.1007/s00894-013-1935-4. Epub 2013 Jul 7. J Mol Model. 2013. PMID: 23832654
-
Predicting helium and neon adsorption and separation on carbon nanotubes by Monte Carlo simulation.
Bolboli Nojini Z, Abbas Rafati A, Majid Hashemianzadeh S, Samiee S. Bolboli Nojini Z, et al. J Mol Model. 2011 Apr;17(4):785-94. doi: 10.1007/s00894-010-0769-6. Epub 2010 Jun 18. J Mol Model. 2011. PMID: 20559855
-
Ghoreishi R, Kia M. Ghoreishi R, et al. J Mol Model. 2019 Jan 28;25(2):46. doi: 10.1007/s00894-018-3914-2. J Mol Model. 2019. PMID: 30689092
-
Exploring surface reactivity of phosphorous-doped (6,0) and (4,4) BC3 nanotubes: a DFT study.
Alizadeh M, Esrafili MD, Vessally E. Alizadeh M, et al. J Mol Model. 2013 Nov;19(11):4877-86. doi: 10.1007/s00894-013-1978-6. Epub 2013 Sep 17. J Mol Model. 2013. PMID: 24043541
-
Esrafili MD, Mohammadirad N. Esrafili MD, et al. J Mol Model. 2015 Jul;21(7):176. doi: 10.1007/s00894-015-2727-9. Epub 2015 Jun 21. J Mol Model. 2015. PMID: 26093685
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources