Tau aggregation is driven by a transition from random coil to beta sheet structure - PubMed
- ️Sat Jan 01 2005
Review
. 2005 Jan 3;1739(2-3):158-66.
doi: 10.1016/j.bbadis.2004.09.010. Epub 2004 Nov 12.
Affiliations
- PMID: 15615635
- DOI: 10.1016/j.bbadis.2004.09.010
Free article
Review
Tau aggregation is driven by a transition from random coil to beta sheet structure
Martin von Bergen et al. Biochim Biophys Acta. 2005.
Free article
Abstract
The abnormal aggregation of the microtubule associated protein tau into paired helical filaments (PHFs) is one the hallmarks of Alzheimer's disease. The soluble protein is one of the longest natively unfolded proteins, lacking significant amounts of secondary structure over a sequence of 441 amino acids in the longest isoform. Furthermore, the unfolded character is consistent with some notable features of the protein like stability towards heat and acid treatment. It is still unclear how these characteristics support the physiological function of binding to and stabilization of microtubules. We review here some recent studies on how an unfolded protein such as tau can adopt beta-structure, which then leads to the highly ordered morphology of the PHFs. The core sequence for both microtubule binding and PHF formation is the microtubule binding domain containing three or four repeats. This region alone is sufficient for PHF formation and mostly unfolded in the soluble state. A search for sequence motifs within this region crucial for PHF building revealed two hexapeptides in the second and the third repeat. Some of the genetically linked cases of FTDP-17 show missense mutations in or adjacent to these hexapeptide motifs. Proteins containing the P301L and the DeltaK280 mutations exhibit accelerated aggregation. The importance of the two hexapeptides stems from their capacity to undergo a conformational change from a random coil to a beta sheet structure. The increase of beta sheet structure is a typical feature of an amyloidogenic protein and is the basis of other characteristics like a decreased sensitivity towards proteolytic degradation and Congo red binding. PHFs aggregated in vitro and in vivo contain beta-sheet structure, as judged by circular dichroism (CD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction.
Similar articles
-
Jeganathan S, von Bergen M, Mandelkow EM, Mandelkow E. Jeganathan S, et al. Biochemistry. 2008 Oct 7;47(40):10526-39. doi: 10.1021/bi800783d. Epub 2008 Sep 11. Biochemistry. 2008. PMID: 18783251
-
Barghorn S, Davies P, Mandelkow E. Barghorn S, et al. Biochemistry. 2004 Feb 17;43(6):1694-703. doi: 10.1021/bi0357006. Biochemistry. 2004. PMID: 14769047
-
β-Sheet core of tau paired helical filaments revealed by solid-state NMR.
Daebel V, Chinnathambi S, Biernat J, Schwalbe M, Habenstein B, Loquet A, Akoury E, Tepper K, Müller H, Baldus M, Griesinger C, Zweckstetter M, Mandelkow E, Vijayan V, Lange A. Daebel V, et al. J Am Chem Soc. 2012 Aug 29;134(34):13982-9. doi: 10.1021/ja305470p. Epub 2012 Aug 15. J Am Chem Soc. 2012. PMID: 22862303
-
von Bergen M, Barghorn S, Jeganathan S, Mandelkow EM, Mandelkow E. von Bergen M, et al. Neurodegener Dis. 2006;3(4-5):197-206. doi: 10.1159/000095257. Neurodegener Dis. 2006. PMID: 17047358 Review.
-
Structural principles of tau and the paired helical filaments of Alzheimer's disease.
Mandelkow E, von Bergen M, Biernat J, Mandelkow EM. Mandelkow E, et al. Brain Pathol. 2007 Jan;17(1):83-90. doi: 10.1111/j.1750-3639.2007.00053.x. Brain Pathol. 2007. PMID: 17493042 Free PMC article. Review.
Cited by
-
Amyloid-β-Derived Peptidomimetics Inhibits Tau Aggregation.
Gorantla NV, Sunny LP, Rajasekhar K, Nagaraju PG, Cg PP, Govindaraju T, Chinnathambi S. Gorantla NV, et al. ACS Omega. 2021 Apr 22;6(17):11131-11138. doi: 10.1021/acsomega.9b03497. eCollection 2021 May 4. ACS Omega. 2021. PMID: 34056268 Free PMC article.
-
The Role of Copper in Tau-Related Pathology in Alzheimer's Disease.
Zubčić K, Hof PR, Šimić G, Jazvinšćak Jembrek M. Zubčić K, et al. Front Mol Neurosci. 2020 Sep 10;13:572308. doi: 10.3389/fnmol.2020.572308. eCollection 2020. Front Mol Neurosci. 2020. PMID: 33071757 Free PMC article. Review.
-
Karikari TK, Turner A, Stass R, Lee LC, Wilson B, Nagel DA, Hill EJ, Moffat KG. Karikari TK, et al. Protein Expr Purif. 2017 Feb;130:44-54. doi: 10.1016/j.pep.2016.09.009. Epub 2016 Sep 20. Protein Expr Purif. 2017. PMID: 27663563 Free PMC article.
-
Skrabana R, Sevcik J, Novak M. Skrabana R, et al. Cell Mol Neurobiol. 2006 Oct-Nov;26(7-8):1085-97. doi: 10.1007/s10571-006-9083-3. Epub 2006 Jun 16. Cell Mol Neurobiol. 2006. PMID: 16779670 Free PMC article. Review.
-
Vourkou E, Rouiz Ortega ED, Mahajan S, Mudher A, Skoulakis EMC. Vourkou E, et al. J Neurosci. 2023 Apr 19;43(16):2988-3006. doi: 10.1523/JNEUROSCI.1374-22.2023. Epub 2023 Mar 3. J Neurosci. 2023. PMID: 36868851 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical