On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes - PubMed
. 2005 Jan;55(Pt 1):487-496.
doi: 10.1099/ijs.0.63216-0.
Affiliations
- PMID: 15653923
- DOI: 10.1099/ijs.0.63216-0
On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes
James T Harper et al. Int J Syst Evol Microbiol. 2005 Jan.
Abstract
A global phylogeny of major eukaryotic lineages is a significant and ongoing challenge to molecular phylogenetics. Currently, there are five hypothesized major lineages or 'supergroups' of eukaryotes. One of these, the chromalveolates, represents a large fraction of protist and algal diversity. The chromalveolate hypothesis was originally based on similarities between the photosynthetic organelles (plastids) found in many of its members and has been supported by analyses of plastid-related genes. However, since plastids can move between eukaryotic lineages, it is important to provide additional support from data generated from the nuclear-cytosolic host lineage. Genes coding for six different cytosolic proteins from a variety of chromalveolates (yielding 68 new gene sequences) have been characterized so that multiple gene analyses, including all six major lineages of chromalveolates, could be compared and concatenated with data representing all five hypothesized supergroups. Overall support for much of the phylogenies is decreased over previous analyses that concatenated fewer genes for fewer taxa. Nevertheless, four of the six chromalveolate lineages (apicomplexans, ciliates, dinoflagellates and heterokonts) consistently form a monophyletic assemblage, whereas the remaining two (cryptomonads and haptophytes) form a weakly supported group. Whereas these results are consistent with the monophyly of chromalveolates inferred from plastid data, testing this hypothesis is going to require a substantial increase in data from a wide variety of organisms.
Similar articles
-
Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rümmele SE, Bhattacharya D. Hackett JD, et al. Mol Biol Evol. 2007 Aug;24(8):1702-13. doi: 10.1093/molbev/msm089. Epub 2007 May 7. Mol Biol Evol. 2007. PMID: 17488740
-
EFL GTPase in cryptomonads and the distribution of EFL and EF-1alpha in chromalveolates.
Gile GH, Patron NJ, Keeling PJ. Gile GH, et al. Protist. 2006 Oct;157(4):435-44. doi: 10.1016/j.protis.2006.06.002. Epub 2006 Aug 10. Protist. 2006. PMID: 16904374
-
Bachvaroff TR, Sanchez Puerta MV, Delwiche CF. Bachvaroff TR, et al. Mol Biol Evol. 2005 Sep;22(9):1772-82. doi: 10.1093/molbev/msi172. Epub 2005 May 25. Mol Biol Evol. 2005. PMID: 15917498
-
Chromalveolates and the evolution of plastids by secondary endosymbiosis.
Keeling PJ. Keeling PJ. J Eukaryot Microbiol. 2009 Jan-Feb;56(1):1-8. doi: 10.1111/j.1550-7408.2008.00371.x. J Eukaryot Microbiol. 2009. PMID: 19335769 Review.
-
Nozaki H. Nozaki H. J Plant Res. 2005 Aug;118(4):247-55. doi: 10.1007/s10265-005-0219-1. Epub 2005 Jul 20. J Plant Res. 2005. PMID: 16032387 Review.
Cited by
-
Zhang M, Wang Q, Xu K, Meng Y, Quan J, Shan W. Zhang M, et al. PLoS One. 2011;6(11):e28114. doi: 10.1371/journal.pone.0028114. Epub 2011 Nov 23. PLoS One. 2011. PMID: 22140518 Free PMC article.
-
Imanian B, Keeling PJ. Imanian B, et al. BMC Evol Biol. 2007 Sep 24;7:172. doi: 10.1186/1471-2148-7-172. BMC Evol Biol. 2007. PMID: 17892581 Free PMC article.
-
Roger AJ, Hug LA. Roger AJ, et al. Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):1039-54. doi: 10.1098/rstb.2006.1845. Philos Trans R Soc Lond B Biol Sci. 2006. PMID: 16754613 Free PMC article. Review.
-
New insights into myosin evolution and classification.
Foth BJ, Goedecke MC, Soldati D. Foth BJ, et al. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3681-6. doi: 10.1073/pnas.0506307103. Epub 2006 Feb 27. Proc Natl Acad Sci U S A. 2006. PMID: 16505385 Free PMC article.
-
Weber AP, Linka M, Bhattacharya D. Weber AP, et al. Eukaryot Cell. 2006 Mar;5(3):609-12. doi: 10.1128/EC.5.3.609-612.2006. Eukaryot Cell. 2006. PMID: 16524915 Free PMC article.