Protein dynamics and electron transfer: electronic decoherence and non-Condon effects - PubMed
- ️Sat Jan 01 2005
Protein dynamics and electron transfer: electronic decoherence and non-Condon effects
Spiros S Skourtis et al. Proc Natl Acad Sci U S A. 2005.
Abstract
We compute the autocorrelation function of the donor-acceptor tunneling matrix element <T(DA)(t)T(DA)(0)> for six Ru-azurin derivatives. Comparison of this decay time to the decay time of the time-dependent Franck-Condon factor {computed by Rossky and coworkers [Lockwood, D. M., Cheng, Y.-K. & Rossky, P. J. (2001) Chem. Phys. Lett. 345, 159-165]} reveals the extent to which non-Condon effects influence the electron-transfer rate. <T(DA)(t)T(DA)(0)> is studied as a function of donor-acceptor distance, tunneling pathway structure, tunneling energy, and temperature to explore the structural and dynamical origins of non-Condon effects. For azurin, the correlation function is remarkably insensitive to tunneling pathway structure. The decay time is only slightly shorter than it is for solvent-mediated electron transfer in small organic molecules and originates, largely, from fluctuations of valence angles rather than bond lengths.
Figures
![Fig. 1.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d382/553344/9e724b5bd301/zpq0100576270001.gif)
Structures of the Ru-modified WT azurin 1BEX and its mutants, H83G Q107H, H83G M109H, H83G K122H, H83G T124H, and H83G T126H, used in the calculations of the TDA correlation functions.
![Fig. 2.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d382/553344/fa93c1d8357b/zpq0100576270002.gif)
for the WT computed from a trajectory of 5,000 × 1 fsec MD snapshots at 310 K. The donor is the Cu-S(Cys-112) orbital described in TDA Calculations, and the acceptor is a dx2-y2 ruthenium orbital. The tunneling energy is -10.8 eV. The coherence parameter is the long-time limit of
, and τcoh is approximately the amount of time it takes for
to drop to 1/e of its initial value.
![Fig. 3.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d382/553344/53467d9945f9/zpq0100576270003.gif)
The dependence of 〈TDA〉 (Upper) and (Lower) on the number (N) of MD conformations used to compute the averages. All conformations were chosen from the same MD trajectory of the WT structure (0.5-nsec total length). The temperature is 310 K, and TDA was computed with Etun =-10.8 eV. The donor and acceptor orbitals are the same as in Fig. 2. The first point N = 10 on the horizontal axis denotes 10 MD conformations separated by 50 psec, the second point is 25 conformations separated by 20 psec, and the final point is 5,000 conformations separated by 100 fsec. In all cases, the block renormalization method was used to compute the errors.
Similar articles
-
Nishioka H, Kimura A, Yamato T, Kawatsu T, Kakitani T. Nishioka H, et al. J Phys Chem B. 2005 Aug 18;109(32):15621-35. doi: 10.1021/jp051606i. J Phys Chem B. 2005. PMID: 16852980
-
Steering electrons on moving pathways.
Beratan DN, Skourtis SS, Balabin IA, Balaeff A, Keinan S, Venkatramani R, Xiao D. Beratan DN, et al. Acc Chem Res. 2009 Oct 20;42(10):1669-78. doi: 10.1021/ar900123t. Acc Chem Res. 2009. PMID: 19645446 Free PMC article. Review.
-
Electron tunneling in azurin: the coupling across a beta-sheet.
Regan JJ, Di Bilio AJ, Langen R, Skov LK, Winkler JR, Gray HB, Onuchic JN. Regan JJ, et al. Chem Biol. 1995 Jul;2(7):489-96. doi: 10.1016/1074-5521(95)90266-x. Chem Biol. 1995. PMID: 9383451
-
Kretchmer JS, Boekelheide N, Warren JJ, Winkler JR, Gray HB, Miller TF 3rd. Kretchmer JS, et al. Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6129-6134. doi: 10.1073/pnas.1805719115. Epub 2018 May 29. Proc Natl Acad Sci U S A. 2018. PMID: 29844178 Free PMC article.
-
Electron tunneling through proteins.
Gray HB, Winkler JR. Gray HB, et al. Q Rev Biophys. 2003 Aug;36(3):341-72. doi: 10.1017/s0033583503003913. Q Rev Biophys. 2003. PMID: 15029828 Review.
Cited by
-
Chi Q, Farver O, Ulstrup J. Chi Q, et al. Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16203-8. doi: 10.1073/pnas.0508257102. Epub 2005 Oct 31. Proc Natl Acad Sci U S A. 2005. PMID: 16260751 Free PMC article.
-
Miyazawa Y, Nishioka H, Yura K, Yamato T. Miyazawa Y, et al. Biophys J. 2008 Mar 15;94(6):2194-203. doi: 10.1529/biophysj.107.119248. Epub 2007 Nov 30. Biophys J. 2008. PMID: 18055535 Free PMC article.
-
Photoselected electron transfer pathways in DNA photolyase.
Prytkova TR, Beratan DN, Skourtis SS. Prytkova TR, et al. Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):802-7. doi: 10.1073/pnas.0605319104. Epub 2007 Jan 5. Proc Natl Acad Sci U S A. 2007. PMID: 17209014 Free PMC article.
-
Ricci G, Canola S, Dai Y, Fazzi D, Negri F. Ricci G, et al. Molecules. 2021 Jul 6;26(14):4119. doi: 10.3390/molecules26144119. Molecules. 2021. PMID: 34299394 Free PMC article.
-
Distance metrics for heme protein electron tunneling.
Moser CC, Chobot SE, Page CC, Dutton PL. Moser CC, et al. Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):1032-7. doi: 10.1016/j.bbabio.2008.04.021. Epub 2008 Apr 18. Biochim Biophys Acta. 2008. PMID: 18471429 Free PMC article.
References
-
- Marcus, R. A. & Sutin, N. (1985) Biochim. Biophys. Acta 811, 265-322.
-
- Kuznetsov, A. M. (1995) Charge Transfer in Physics, Chemistry and Biology (Gordon & Breach, Amsterdam).
-
- Jortner, J. & Ratner, M., eds. (1997) Molecular Electronics (Blackwell Scientific, Oxford).
-
- Kuznetsov, A. M. & Ulstrup, J. (1999) Electron Transfer in Chemistry and Biology (Wiley, Chichester, U.K.).
-
- Jortner, J. & Bixon, M., eds. (1999) Electron Transfer: From Isolated Molecules to Biomolecules, Advances in Chemical Physics (Wiley, New York), Vols. 106-107.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources