Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding - PubMed
Comparative Study
doi: 10.1038/nmeth740. Epub 2005 Feb 17.
Affiliations
- PMID: 15782190
- DOI: 10.1038/nmeth740
Comparative Study
Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding
Chiwook Park et al. Nat Methods. 2005 Mar.
Abstract
Thermodynamic stability is fundamental to the biology of proteins. Information on protein stability is essential for studying protein structure and folding and can also be used indirectly to monitor protein-ligand or protein-protein interactions. While clearly valuable, the experimental determination of a protein's stability typically requires biophysical instrumentation and substantial quantities of purified protein, which has limited the use of this technique as a general laboratory method. We report here a simple new method for determining protein stability by using pulse proteolysis with varying concentrations of denaturant. Pulse proteolysis is designed to digest only the unfolded proteins in an equilibrium mixture of folded and unfolded proteins that relaxes on a time scale longer than the proteolytic pulse. We used this method to study the stabilities of Escherichia coli ribonuclease H and its variants, both in purified form and directly from cell lysates. The DeltaG(unf) degrees values obtained by this technique were in agreement with those determined by traditional methods. We also successfully used this method to monitor the binding of maltose-binding protein to maltose, as well as to rapidly screen cognate ligands for this protein. The simplicity of pulse proteolysis suggests that it is an excellent strategy for the high-throughput determination of protein stability in protein engineering and drug discovery applications.
Similar articles
-
West GM, Tang L, Fitzgerald MC. West GM, et al. Anal Chem. 2008 Jun 1;80(11):4175-85. doi: 10.1021/ac702610a. Epub 2008 May 6. Anal Chem. 2008. PMID: 18457414
-
Probing the high energy states in proteins by proteolysis.
Park C, Marqusee S. Park C, et al. J Mol Biol. 2004 Nov 5;343(5):1467-76. doi: 10.1016/j.jmb.2004.08.085. J Mol Biol. 2004. PMID: 15491624
-
Revisiting absorbance at 230nm as a protein unfolding probe.
Liu PF, Avramova LV, Park C. Liu PF, et al. Anal Biochem. 2009 Jun 15;389(2):165-70. doi: 10.1016/j.ab.2009.03.028. Epub 2009 Mar 24. Anal Biochem. 2009. PMID: 19318083
-
Conformational stability and folding mechanisms of dimeric proteins.
Rumfeldt JA, Galvagnion C, Vassall KA, Meiering EM. Rumfeldt JA, et al. Prog Biophys Mol Biol. 2008 Sep;98(1):61-84. doi: 10.1016/j.pbiomolbio.2008.05.004. Epub 2008 Jun 8. Prog Biophys Mol Biol. 2008. PMID: 18602415 Review.
-
Probing membrane protein unfolding with pulse proteolysis.
Schlebach JP, Kim MS, Joh NH, Bowie JU, Park C. Schlebach JP, et al. J Mol Biol. 2011 Mar 4;406(4):545-51. doi: 10.1016/j.jmb.2010.12.018. Epub 2010 Dec 28. J Mol Biol. 2011. PMID: 21192947 Free PMC article. Review.
Cited by
-
Fibrils colocalize caspase-3 with procaspase-3 to foster maturation.
Zorn JA, Wolan DW, Agard NJ, Wells JA. Zorn JA, et al. J Biol Chem. 2012 Sep 28;287(40):33781-95. doi: 10.1074/jbc.M112.386128. Epub 2012 Aug 7. J Biol Chem. 2012. PMID: 22872644 Free PMC article.
-
Metabolites modulate the functional state of human uridine phosphorylase I.
Huang YT, Yeh PC, Lan SC, Liu PF. Huang YT, et al. Protein Sci. 2020 Nov;29(11):2189-2200. doi: 10.1002/pro.3939. Epub 2020 Sep 28. Protein Sci. 2020. PMID: 32864839 Free PMC article.
-
Renn JP, Junker M, Besingi RN, Braselmann E, Clark PL. Renn JP, et al. Chem Biol. 2012 Feb 24;19(2):287-96. doi: 10.1016/j.chembiol.2011.11.009. Epub 2011 Dec 29. Chem Biol. 2012. PMID: 22209629 Free PMC article.
-
Geer Wallace MA, Kwon DY, Weitzel DH, Lee CT, Stephenson TN, Chi JT, Mook RA Jr, Dewhirst MW, Hong J, Fitzgerald MC. Geer Wallace MA, et al. J Proteome Res. 2016 Aug 5;15(8):2688-96. doi: 10.1021/acs.jproteome.6b00237. Epub 2016 Jul 8. J Proteome Res. 2016. PMID: 27322910 Free PMC article.
-
Non-Equilibrium Protein Folding and Activation by ATP-Driven Chaperones.
Xu H. Xu H. Biomolecules. 2022 Jun 15;12(6):832. doi: 10.3390/biom12060832. Biomolecules. 2022. PMID: 35740957 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources