Gene regulation at the single-cell level - PubMed
- ️Sat Jan 01 2005
. 2005 Mar 25;307(5717):1962-5.
doi: 10.1126/science.1106914.
Affiliations
- PMID: 15790856
- DOI: 10.1126/science.1106914
Free article
Gene regulation at the single-cell level
Nitzan Rosenfeld et al. Science. 2005.
Free article
Abstract
The quantitative relation between transcription factor concentrations and the rate of protein production from downstream genes is central to the function of genetic networks. Here we show that this relation, which we call the gene regulation function (GRF), fluctuates dynamically in individual living cells, thereby limiting the accuracy with which transcriptional genetic circuits can transfer signals. Using fluorescent reporter genes and fusion proteins, we characterized the bacteriophage lambda promoter P(R) in Escherichia coli. A novel technique based on binomial errors in protein partitioning enabled calibration of in vivo biochemical parameters in molecular units. We found that protein production rates fluctuate over a time scale of about one cell cycle, while intrinsic noise decays rapidly. Thus, biochemical parameters, noise, and slowly varying cellular states together determine the effective single-cell GRF. These results can form a basis for quantitative modeling of natural gene circuits and for design of synthetic ones.
Comment in
-
Molecular biology. Signal processing in single cells.
Isaacs FJ, Blake WJ, Collins JJ. Isaacs FJ, et al. Science. 2005 Mar 25;307(5717):1886-8. doi: 10.1126/science.1110797. Science. 2005. PMID: 15790834 No abstract available.
Similar articles
-
Noise propagation in gene networks.
Pedraza JM, van Oudenaarden A. Pedraza JM, et al. Science. 2005 Mar 25;307(5717):1965-9. doi: 10.1126/science.1109090. Science. 2005. PMID: 15790857
-
Molecular biology. Signal processing in single cells.
Isaacs FJ, Blake WJ, Collins JJ. Isaacs FJ, et al. Science. 2005 Mar 25;307(5717):1886-8. doi: 10.1126/science.1110797. Science. 2005. PMID: 15790834 No abstract available.
-
Stochastic gene expression in a single cell.
Elowitz MB, Levine AJ, Siggia ED, Swain PS. Elowitz MB, et al. Science. 2002 Aug 16;297(5584):1183-6. doi: 10.1126/science.1070919. Science. 2002. PMID: 12183631
-
Global regulators of transcription in Escherichia coli: mechanisms of action and methods for study.
Grainger DC, Busby SJ. Grainger DC, et al. Adv Appl Microbiol. 2008;65:93-113. doi: 10.1016/S0065-2164(08)00604-7. Adv Appl Microbiol. 2008. PMID: 19026863 Review. No abstract available.
-
Flagellar biosynthesis in silico: building quantitative models of regulatory networks.
Herrgård MJ, Palsson BØ. Herrgård MJ, et al. Cell. 2004 Jun 11;117(6):689-90. doi: 10.1016/j.cell.2004.05.020. Cell. 2004. PMID: 15186769 Review.
Cited by
-
Synthetic mammalian transgene negative autoregulation.
Shimoga V, White JT, Li Y, Sontag E, Bleris L. Shimoga V, et al. Mol Syst Biol. 2013 Jun 4;9:670. doi: 10.1038/msb.2013.27. Mol Syst Biol. 2013. PMID: 23736683 Free PMC article.
-
Shi X, Gao W, Chao SH, Zhang W, Meldrum DR. Shi X, et al. Appl Environ Microbiol. 2013 Mar;79(6):1850-8. doi: 10.1128/AEM.03399-12. Epub 2013 Jan 11. Appl Environ Microbiol. 2013. PMID: 23315741 Free PMC article.
-
Fundamental limits on persistent activity in networks of noisy neurons.
Burak Y, Fiete IR. Burak Y, et al. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17645-50. doi: 10.1073/pnas.1117386109. Epub 2012 Oct 9. Proc Natl Acad Sci U S A. 2012. PMID: 23047704 Free PMC article.
-
Stochastic variation: from single cells to superorganisms.
Kilfoil ML, Lasko P, Abouheif E. Kilfoil ML, et al. HFSP J. 2009 Dec;3(6):379-85. doi: 10.2976/1.3223356. Epub 2009 Oct 9. HFSP J. 2009. PMID: 20514130 Free PMC article.
-
Siegal-Gaskins D, Ash JN, Crosson S. Siegal-Gaskins D, et al. PLoS Comput Biol. 2009 Aug;5(8):e1000460. doi: 10.1371/journal.pcbi.1000460. Epub 2009 Aug 14. PLoS Comput Biol. 2009. PMID: 19680537 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous