Impact of distal mutations on the network of coupled motions correlated to hydride transfer in dihydrofolate reductase - PubMed
- ️Sat Jan 01 2005
Impact of distal mutations on the network of coupled motions correlated to hydride transfer in dihydrofolate reductase
Kim F Wong et al. Proc Natl Acad Sci U S A. 2005.
Abstract
A comprehensive analysis of the network of coupled motions correlated to hydride transfer in dihydrofolate reductase is presented. Hybrid quantum/classical molecular dynamics simulations are combined with a rank correlation analysis method to extract thermally averaged properties that vary along the collective reaction coordinate according to a prescribed target model. Coupled motions correlated to hydride transfer are identified throughout the enzyme. Calculations for wild-type dihydrofolate reductase and a triple mutant, along with the associated single and double mutants, indicate that each enzyme system samples a unique distribution of coupled motions correlated to hydride transfer. These coupled motions provide an explanation for the experimentally measured nonadditivity effects in the hydride transfer rates for these mutants. This analysis illustrates that mutations distal to the active site can introduce nonlocal structural perturbations and significantly impact the catalytic rate by altering the conformational motions of the entire enzyme and the probability of sampling conformations conducive to the catalyzed reaction.
Figures
![Fig. 1.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f135/1100751/619d8991b4ad/zpq0150579160001.gif)
The 3D structure of WT DHFR. The important loop regions are labeled. The substrate and cofactor are depicted in red, and the residues involved in the mutants studied are identified with yellow spheres.
![Fig. 2.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f135/1100751/75ef7106ae82/zpq0150579160002.gif)
Target models for the variation of the thermally averaged property as a function of the reaction coordinate. (A) SYMM. (B) MONO.
![Fig. 3.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f135/1100751/13f244ff6de7/zpq0150579160003.gif)
Correlation maps for WT DHFR using the target models SYMM (A) and MONO (B). Each map depicts the correlation of thermally averaged interatomic distances in the enzyme with the target model along the collective reaction coordinate. The correlations are calculated with Kendall's tau method. Red denotes correlated regions (τ = 1), and blue denotes anticorrelated regions (τ =–1). The two axes are identical and represent the atoms of the enzyme in sequential order. The three sites of mutation are identified on the vertical axis, and three key loop regions are identified on the horizontal axis.
Similar articles
-
Hammes-Schiffer S, Watney JB. Hammes-Schiffer S, et al. Philos Trans R Soc Lond B Biol Sci. 2006 Aug 29;361(1472):1365-73. doi: 10.1098/rstb.2006.1869. Philos Trans R Soc Lond B Biol Sci. 2006. PMID: 16873124 Free PMC article.
-
Correlated motion and the effect of distal mutations in dihydrofolate reductase.
Rod TH, Radkiewicz JL, Brooks CL 3rd. Rod TH, et al. Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):6980-5. doi: 10.1073/pnas.1230801100. Epub 2003 May 19. Proc Natl Acad Sci U S A. 2003. PMID: 12756296 Free PMC article.
-
Mhashal AR, Pshetitsky Y, Eitan R, Cheatum CM, Kohen A, Major DT. Mhashal AR, et al. J Phys Chem B. 2018 Aug 23;122(33):8006-8017. doi: 10.1021/acs.jpcb.8b05556. Epub 2018 Aug 9. J Phys Chem B. 2018. PMID: 30040418
-
Catalytic efficiency of enzymes: a theoretical analysis.
Hammes-Schiffer S. Hammes-Schiffer S. Biochemistry. 2013 Mar 26;52(12):2012-20. doi: 10.1021/bi301515j. Epub 2012 Dec 20. Biochemistry. 2013. PMID: 23240765 Free PMC article. Review.
Cited by
-
Fan Y, Cembran A, Ma S, Gao J. Fan Y, et al. Biochemistry. 2013 Mar 26;52(12):2036-49. doi: 10.1021/bi301559q. Epub 2013 Jan 16. Biochemistry. 2013. PMID: 23297871 Free PMC article.
-
Oyeyemi OA, Sours KM, Lee T, Resing KA, Ahn NG, Klinman JP. Oyeyemi OA, et al. Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10074-9. doi: 10.1073/pnas.1003678107. Epub 2010 May 13. Proc Natl Acad Sci U S A. 2010. PMID: 20534574 Free PMC article.
-
Hammes-Schiffer S, Watney JB. Hammes-Schiffer S, et al. Philos Trans R Soc Lond B Biol Sci. 2006 Aug 29;361(1472):1365-73. doi: 10.1098/rstb.2006.1869. Philos Trans R Soc Lond B Biol Sci. 2006. PMID: 16873124 Free PMC article.
-
Human cytidine deaminase: a biochemical characterization of its naturally occurring variants.
Micozzi D, Carpi FM, Pucciarelli S, Polzonetti V, Polidori P, Vilar S, Williams B, Costanzi S, Vincenzetti S. Micozzi D, et al. Int J Biol Macromol. 2014 Feb;63:64-74. doi: 10.1016/j.ijbiomac.2013.10.029. Epub 2013 Oct 29. Int J Biol Macromol. 2014. PMID: 24183806 Free PMC article.
-
Enzymatic Kinetic Isotope Effects from Path-Integral Free Energy Perturbation Theory.
Gao J. Gao J. Methods Enzymol. 2016;577:359-88. doi: 10.1016/bs.mie.2016.05.057. Epub 2016 Jul 22. Methods Enzymol. 2016. PMID: 27498645 Free PMC article.
References
-
- Miller, G. P. & Benkovic, S. J. (1998) Chem. Biol. 5, R105–R113. - PubMed
-
- Berg, J. M., Stryer, L. & Tymoczko, J. (2002) Biochemistry (Freeman, New York), 5th Ed.
-
- Fierke, C. A., Johnson, K. A. & Benkovic, S. J. (1987) Biochemistry 26, 4085–4092. - PubMed
-
- Sawaya, M. R. & Kraut, J. (1997) Biochemistry 36, 586–603. - PubMed
-
- Falzone, C. J., Wright, P. E. & Benkovic, S. J. (1994) Biochemistry 33, 439–442. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources