Podocyte hypertrophy, "adaptation," and "decompensation" associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction - PubMed
. 2005 Oct;16(10):2953-66.
doi: 10.1681/ASN.2005050488. Epub 2005 Aug 24.
Affiliations
- PMID: 16120818
- DOI: 10.1681/ASN.2005050488
Podocyte hypertrophy, "adaptation," and "decompensation" associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction
Jocelyn E Wiggins et al. J Am Soc Nephrol. 2005 Oct.
Abstract
Whether podocyte depletion could cause the glomerulosclerosis of aging in Fischer 344 rats at ages 2, 6, 17, and 24 mo was evaluated. Ad libitum-fed rats developed proteinuria and glomerulosclerosis by 24 mo, whereas calorie-restricted rats did not. No evidence of age-associated progressive linear loss of podocytes from glomeruli was found. Rather, ad libitum-fed rats developed glomerular enlargement over time. To accommodate the increased glomerular volume, podocytes principally underwent hypertrophy, whereas other glomerular cells underwent hyperplasia. Stages of hypertrophy through which podocytes pass en route to podocyte loss and glomerulosclerosis were identified: Stage 1, normal podocyte; stage 2, nonstressed podocyte hypertrophy; stage 3, "adaptive" podocyte hypertrophy manifest by changes in synthesis of structural components (e.g., desmin) but maintenance of normal function; stage 4, "decompensated" podocyte hypertrophy relative to total glomerular volume manifest by reduced production of key machinery necessary for normal podocyte function (e.g., Wilms' tumor 1 protein [WT1], transcription factor pod1, nephrin, glomerular epithelial protein 1, podocalyxin, vascular endothelial growth factor, and alpha5 type IV collagen) and associated with widened foot processes and decreased filter efficiency (proteinuria); and stage 5, podocyte numbers decrease in association with focal segmental glomerulosclerosis. In contrast, in calorie-restricted rats, glomerular enlargement was minor, significant podocyte hypertrophy did not occur, podocyte machinery was unchanged, there was no proteinuria, and glomerulosclerosis did not develop. Glomerular enlargement therefore was associated with podocyte hypertrophy rather than hyperplasia. Hypertrophy above a certain threshold was associated with podocyte stress and then failure, culminating in reduced podocyte numbers in sclerotic glomeruli. This process could be prevented by calorie restriction.
Comment in
-
Role of podocytes in focal sclerosis: defining the point of no return.
Kretzler M. Kretzler M. J Am Soc Nephrol. 2005 Oct;16(10):2830-2. doi: 10.1681/ASN.2005080841. Epub 2005 Sep 7. J Am Soc Nephrol. 2005. PMID: 16148037 Review. No abstract available.
Similar articles
-
Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, Filipiak WE, Saunders TL, Dysko RC, Kohno K, Holzman LB, Wiggins RC. Wharram BL, et al. J Am Soc Nephrol. 2005 Oct;16(10):2941-52. doi: 10.1681/ASN.2005010055. Epub 2005 Aug 17. J Am Soc Nephrol. 2005. PMID: 16107576
-
Growth-dependent podocyte failure causes glomerulosclerosis.
Fukuda A, Chowdhury MA, Venkatareddy MP, Wang SQ, Nishizono R, Suzuki T, Wickman LT, Wiggins JE, Muchayi T, Fingar D, Shedden KA, Inoki K, Wiggins RC. Fukuda A, et al. J Am Soc Nephrol. 2012 Aug;23(8):1351-63. doi: 10.1681/ASN.2012030271. Epub 2012 Jul 5. J Am Soc Nephrol. 2012. PMID: 22773827 Free PMC article.
-
Wiggins JE, Goyal M, Wharram BL, Wiggins RC. Wiggins JE, et al. J Am Soc Nephrol. 2006 May;17(5):1382-7. doi: 10.1681/ASN.2005111239. Epub 2006 Apr 5. J Am Soc Nephrol. 2006. PMID: 16597684
-
Ronconi E, Mazzinghi B, Sagrinati C, Angelotti ML, Ballerini L, Parente E, Romagnani P, Lazzeri E, Lasagni L. Ronconi E, et al. G Ital Nefrol. 2009 Nov-Dec;26(6):660-9. G Ital Nefrol. 2009. PMID: 19918748 Review. Italian.
-
The role of podocytes in glomerular pathobiology.
Asanuma K, Mundel P. Asanuma K, et al. Clin Exp Nephrol. 2003 Dec;7(4):255-9. doi: 10.1007/s10157-003-0259-6. Clin Exp Nephrol. 2003. PMID: 14712353 Review.
Cited by
-
van der Wolde J, Haruhara K, Puelles VG, Nikolic-Paterson D, Bertram JF, Cullen-McEwen LA. van der Wolde J, et al. Cell Tissue Res. 2022 May;388(2):439-451. doi: 10.1007/s00441-022-03611-2. Epub 2022 Mar 15. Cell Tissue Res. 2022. PMID: 35290515 Free PMC article.
-
Hasegawa K, Wakino S, Yoshioka K, Tatematsu S, Hara Y, Minakuchi H, Sueyasu K, Washida N, Tokuyama H, Tzukerman M, Skorecki K, Hayashi K, Itoh H. Hasegawa K, et al. J Biol Chem. 2010 Apr 23;285(17):13045-56. doi: 10.1074/jbc.M109.067728. Epub 2010 Feb 5. J Biol Chem. 2010. PMID: 20139070 Free PMC article.
-
The transcription factor Dach1 is essential for podocyte function.
Endlich N, Kliewe F, Kindt F, Schmidt K, Kotb AM, Artelt N, Lindenmeyer MT, Cohen CD, Döring F, Kuss AW, Amann K, Moeller MJ, Kabgani N, Blumenthal A, Endlich K. Endlich N, et al. J Cell Mol Med. 2018 May;22(5):2656-2669. doi: 10.1111/jcmm.13544. Epub 2018 Mar 2. J Cell Mol Med. 2018. PMID: 29498212 Free PMC article.
-
Zhang S, Zhang Y, Zhang X, Luo C, Cao Y, Ji D, Yan W, Xue K, Chai J, Dai H, Wang W. Zhang S, et al. Oxid Med Cell Longev. 2020 Jan 25;2020:4252047. doi: 10.1155/2020/4252047. eCollection 2020. Oxid Med Cell Longev. 2020. PMID: 32047576 Free PMC article.
-
Unraveling the role of podocyte turnover in glomerular aging and injury.
Wanner N, Hartleben B, Herbach N, Goedel M, Stickel N, Zeiser R, Walz G, Moeller MJ, Grahammer F, Huber TB. Wanner N, et al. J Am Soc Nephrol. 2014 Apr;25(4):707-16. doi: 10.1681/ASN.2013050452. Epub 2014 Jan 9. J Am Soc Nephrol. 2014. PMID: 24408871 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials