Minireview: aquaporin 2 trafficking - PubMed
Review
. 2005 Dec;146(12):5063-70.
doi: 10.1210/en.2005-0868. Epub 2005 Sep 8.
Affiliations
- PMID: 16150901
- DOI: 10.1210/en.2005-0868
Review
Minireview: aquaporin 2 trafficking
Giovanna Valenti et al. Endocrinology. 2005 Dec.
Abstract
In the kidney aquaporin-2 (AQP2) provides a target for hormonal regulation of water transport by vasopressin. Short-term control of water permeability occurs via vesicular trafficking of AQP2 and long-term control through changes in the abundance of AQP2 and AQP3 water channels. Defective AQP2 trafficking causes nephrogenic diabetes insipidus, a condition characterized by the kidney inability to produce concentrated urine because of the insensitivity of the distal nephron to vasopressin. AQP2 is redistributed to the apical membrane of collecting duct cells through activation of a cAMP signaling cascade initiated by the binding of vasopressin to its V2-receptor. Protein kinase A-mediated phosphorylation of AQP2 has been proposed to be essential in regulating AQP2-containing vesicle exocytosis. Cessation of the stimulus is followed by endocytosis of the AQP2 proteins exposed on the plasma membrane and their recycling to the original stores, in which they are retained. Soluble N-ethylmaleimide sensitive fusion factor attachment protein receptors (SNARE) and actin cytoskeleton organization regulated by small GTPase of the Rho family were also proved to be essential for AQP2 trafficking. Data for functional involvement of the SNARE vesicle-associated membrane protein 2 in AQP2 targeting has recently been provided. Changes in AQP2 expression/trafficking are of particular importance in pathological conditions characterized by both dilutional and concentrating defects. One of these conditions, hypercalciuria, has shown to be associated with alteration of AQP2 urinary excretion. More precisely, recent data support the hypothesis that, in vivo external calcium, through activation of calcium-sensing receptors, modulates the expression/trafficking of AQP2. Together these findings underscore the importance of AQP2 in kidney pathophysiology.
Similar articles
-
Regulation of aquaporin-2 trafficking.
Nedvetsky PI, Tamma G, Beulshausen S, Valenti G, Rosenthal W, Klussmann E. Nedvetsky PI, et al. Handb Exp Pharmacol. 2009;(190):133-57. doi: 10.1007/978-3-540-79885-9_6. Handb Exp Pharmacol. 2009. PMID: 19096775 Review.
-
Gooch JL, Guler RL, Barnes JL, Toro JJ. Gooch JL, et al. J Cell Sci. 2006 Jun 15;119(Pt 12):2468-76. doi: 10.1242/jcs.02971. Epub 2006 May 30. J Cell Sci. 2006. PMID: 16735444
-
Vukićević T, Hinze C, Baltzer S, Himmerkus N, Quintanova C, Zühlke K, Compton F, Ahlborn R, Dema A, Eichhorst J, Wiesner B, Bleich M, Schmidt-Ott KM, Klussmann E. Vukićević T, et al. J Am Soc Nephrol. 2019 May;30(5):795-810. doi: 10.1681/ASN.2018060668. Epub 2019 Apr 15. J Am Soc Nephrol. 2019. PMID: 30988011 Free PMC article.
-
The ins and outs of aquaporin-2 trafficking.
Brown D. Brown D. Am J Physiol Renal Physiol. 2003 May;284(5):F893-901. doi: 10.1152/ajprenal.00387.2002. Am J Physiol Renal Physiol. 2003. PMID: 12676734 Review.
-
Syntaxin specificity of aquaporins in the inner medullary collecting duct.
Mistry AC, Mallick R, Klein JD, Weimbs T, Sands JM, Fröhlich O. Mistry AC, et al. Am J Physiol Renal Physiol. 2009 Aug;297(2):F292-300. doi: 10.1152/ajprenal.00196.2009. Epub 2009 Jun 10. Am J Physiol Renal Physiol. 2009. PMID: 19515809 Free PMC article.
Cited by
-
Data resource: vasopressin-regulated protein phosphorylation sites in the collecting duct.
Park E, Yang CR, Raghuram V, Deshpande V, Datta A, Poll BG, Leo KT, Kikuchi H, Chen L, Chou CL, Knepper MA. Park E, et al. Am J Physiol Renal Physiol. 2023 Jan 1;324(1):F43-F55. doi: 10.1152/ajprenal.00229.2022. Epub 2022 Oct 20. Am J Physiol Renal Physiol. 2023. PMID: 36264882 Free PMC article.
-
CRISPR-Cas9/phosphoproteomics identifies multiple noncanonical targets of myosin light chain kinase.
Isobe K, Raghuram V, Krishnan L, Chou CL, Yang CR, Knepper MA. Isobe K, et al. Am J Physiol Renal Physiol. 2020 Mar 1;318(3):F600-F616. doi: 10.1152/ajprenal.00431.2019. Epub 2020 Jan 6. Am J Physiol Renal Physiol. 2020. PMID: 31904282 Free PMC article.
-
Nephrogenic diabetes insipidus in mice caused by deleting COOH-terminal tail of aquaporin-2.
Shi PP, Cao XR, Qu J, Volk KA, Kirby P, Williamson RA, Stokes JB, Yang B. Shi PP, et al. Am J Physiol Renal Physiol. 2007 May;292(5):F1334-44. doi: 10.1152/ajprenal.00308.2006. Epub 2007 Jan 16. Am J Physiol Renal Physiol. 2007. PMID: 17229678 Free PMC article.
-
The role of transient receptor potential channels in kidney disease.
Woudenberg-Vrenken TE, Bindels RJ, Hoenderop JG. Woudenberg-Vrenken TE, et al. Nat Rev Nephrol. 2009 Aug;5(8):441-9. doi: 10.1038/nrneph.2009.100. Epub 2009 Jun 23. Nat Rev Nephrol. 2009. PMID: 19546862 Review.
-
A knowledge base of vasopressin actions in the kidney.
Sanghi A, Zaringhalam M, Corcoran CC, Saeed F, Hoffert JD, Sandoval P, Pisitkun T, Knepper MA. Sanghi A, et al. Am J Physiol Renal Physiol. 2014 Sep 15;307(6):F747-55. doi: 10.1152/ajprenal.00012.2014. Epub 2014 Jul 23. Am J Physiol Renal Physiol. 2014. PMID: 25056354 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources