DDB1-DDB2 (xeroderma pigmentosum group E) protein complex recognizes a cyclobutane pyrimidine dimer, mismatches, apurinic/apyrimidinic sites, and compound lesions in DNA - PubMed
- ️Sat Jan 01 2005
. 2005 Dec 2;280(48):39982-9.
doi: 10.1074/jbc.M507854200. Epub 2005 Aug 24.
Affiliations
- PMID: 16223728
- DOI: 10.1074/jbc.M507854200
Free article
DDB1-DDB2 (xeroderma pigmentosum group E) protein complex recognizes a cyclobutane pyrimidine dimer, mismatches, apurinic/apyrimidinic sites, and compound lesions in DNA
Birgitte Ø Wittschieben et al. J Biol Chem. 2005.
Free article
Abstract
The DDB protein complex, comprising the subunits DDB1 and DDB2, binds tightly to UV light-irradiated DNA. Mutations in DDB2 are responsible for xeroderma pigmentosum group E, a disorder with defects in nucleotide excision repair of DNA. Both subunits are also components of a complex involved in ubiquitin-mediated proteolysis. Cellular defects in DDB2 disable repair of the major UV radiation photoproduct in DNA, a cyclobutane pyrimidine dimer, but no significant direct binding of DDB to this photoproduct in DNA has ever been demonstrated. Thus, it has been uncertain how DDB could play a specific role in DNA repair of such damage. We investigated DDB function using highly purified proteins. Co-purified DDB1-DDB2 or DDB reconstituted with individual DDB1 and DDB2 subunits binds to damaged DNA as a ternary complex. We found that DDB can indeed recognize a cyclobutane pyrimidine dimer in DNA with an affinity (K(app)a) 6-fold higher than that of nondamaged DNA. The DDB1-DDB2 complex also bound with high specificity to a UV radiation-induced (6-4) photoproduct and to an apurinic site in DNA. Unexpectedly, DDB also bound avidly to DNA containing a 2- or 3-bp mismatch (and does not bind well to DNA containing larger mismatches). These data indicate that DDB does not detect lesions per se. It instead recognizes other structural features of damaged DNA, acting as a sensor that probes DNA for a subset of conformational changes. Lesions recognized may include those arising when translesion polymerases such as POLH incorporate bases across from DNA lesions caused by UV radiation.
Similar articles
-
Kapetanaki MG, Guerrero-Santoro J, Bisi DC, Hsieh CL, Rapić-Otrin V, Levine AS. Kapetanaki MG, et al. Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2588-93. doi: 10.1073/pnas.0511160103. Epub 2006 Feb 10. Proc Natl Acad Sci U S A. 2006. PMID: 16473935 Free PMC article.
-
Xeroderma pigmentosum complementation group E and UV-damaged DNA-binding protein.
Tang J, Chu G. Tang J, et al. DNA Repair (Amst). 2002 Aug 6;1(8):601-16. doi: 10.1016/s1568-7864(02)00052-6. DNA Repair (Amst). 2002. PMID: 12509284 Free PMC article. Review.
-
Lan L, Nakajima S, Kapetanaki MG, Hsieh CL, Fagerburg M, Thickman K, Rodriguez-Collazo P, Leuba SH, Levine AS, Rapić-Otrin V. Lan L, et al. J Biol Chem. 2012 Apr 6;287(15):12036-49. doi: 10.1074/jbc.M111.307058. Epub 2012 Feb 10. J Biol Chem. 2012. PMID: 22334663 Free PMC article.
-
Guerrero-Santoro J, Kapetanaki MG, Hsieh CL, Gorbachinsky I, Levine AS, Rapić-Otrin V. Guerrero-Santoro J, et al. Cancer Res. 2008 Jul 1;68(13):5014-22. doi: 10.1158/0008-5472.CAN-07-6162. Cancer Res. 2008. PMID: 18593899
-
Morikawa K, Shirakawa M. Morikawa K, et al. Mutat Res. 2000 Aug 30;460(3-4):257-75. doi: 10.1016/s0921-8777(00)00031-8. Mutat Res. 2000. PMID: 10946233 Review.
Cited by
-
Oxidative Stress and Deregulated DNA Damage Response Network in Lung Cancer Patients.
Stefanou DT, Kouvela M, Stellas D, Voutetakis K, Papadodima O, Syrigos K, Souliotis VL. Stefanou DT, et al. Biomedicines. 2022 May 26;10(6):1248. doi: 10.3390/biomedicines10061248. Biomedicines. 2022. PMID: 35740268 Free PMC article.
-
XPA: DNA Repair Protein of Significant Clinical Importance.
Borszéková Pulzová L, Ward TA, Chovanec M. Borszéková Pulzová L, et al. Int J Mol Sci. 2020 Mar 22;21(6):2182. doi: 10.3390/ijms21062182. Int J Mol Sci. 2020. PMID: 32235701 Free PMC article. Review.
-
Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome.
Cavadini S, Fischer ES, Bunker RD, Potenza A, Lingaraju GM, Goldie KN, Mohamed WI, Faty M, Petzold G, Beckwith RE, Tichkule RB, Hassiepen U, Abdulrahman W, Pantelic RS, Matsumoto S, Sugasawa K, Stahlberg H, Thomä NH. Cavadini S, et al. Nature. 2016 Mar 31;531(7596):598-603. doi: 10.1038/nature17416. Nature. 2016. PMID: 27029275
-
Rossner P Jr, Mrhalkova A, Uhlirova K, Spatova M, Rossnerova A, Libalova H, Schmuczerova J, Milcova A, Topinka J, Sram RJ. Rossner P Jr, et al. PLoS One. 2013 Jul 19;8(7):e69197. doi: 10.1371/journal.pone.0069197. Print 2013. PLoS One. 2013. PMID: 23894430 Free PMC article.
-
Pregi N, Belluscio LM, Berardino BG, Castillo DS, Cánepa ET. Pregi N, et al. Mol Cell Biochem. 2017 Jan;425(1-2):9-24. doi: 10.1007/s11010-016-2858-z. Epub 2016 Nov 5. Mol Cell Biochem. 2017. PMID: 27816995
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases