Using Bayesian networks to model expected and unexpected operational losses - PubMed
Using Bayesian networks to model expected and unexpected operational losses
Martin Neil et al. Risk Anal. 2005 Aug.
Abstract
This report describes the use of Bayesian networks (BNs) to model statistical loss distributions in financial operational risk scenarios. Its focus is on modeling "long" tail, or unexpected, loss events using mixtures of appropriate loss frequency and severity distributions where these mixtures are conditioned on causal variables that model the capability or effectiveness of the underlying controls process. The use of causal modeling is discussed from the perspective of exploiting local expertise about process reliability and formally connecting this knowledge to actual or hypothetical statistical phenomena resulting from the process. This brings the benefit of supplementing sparse data with expert judgment and transforming qualitative knowledge about the process into quantitative predictions. We conclude that BNs can help combine qualitative data from experts and quantitative data from historical loss databases in a principled way and as such they go some way in meeting the requirements of the draft Basel II Accord (Basel, 2004) for an advanced measurement approach (AMA).
Similar articles
-
Biedermann A, Taroni F. Biedermann A, et al. Forensic Sci Int. 2006 Mar 10;157(2-3):163-7. doi: 10.1016/j.forsciint.2005.09.008. Epub 2005 Nov 4. Forensic Sci Int. 2006. PMID: 16271838
-
Estimation of incident clearance times using Bayesian Networks approach.
Ozbay K, Noyan N. Ozbay K, et al. Accid Anal Prev. 2006 May;38(3):542-55. doi: 10.1016/j.aap.2005.11.012. Epub 2006 Jan 19. Accid Anal Prev. 2006. PMID: 16426557
-
Chang R, Brauer W, Stetter M. Chang R, et al. Neural Netw. 2008 Mar-Apr;21(2-3):182-92. doi: 10.1016/j.neunet.2007.12.042. Epub 2007 Dec 31. Neural Netw. 2008. PMID: 18272332
-
Li G, Leong TY. Li G, et al. Stud Health Technol Inform. 2007;129(Pt 1):560-5. Stud Health Technol Inform. 2007. PMID: 17911779
-
Kopylev L, Chen C, White P. Kopylev L, et al. Regul Toxicol Pharmacol. 2007 Dec;49(3):203-7. doi: 10.1016/j.yrtph.2007.08.002. Epub 2007 Aug 24. Regul Toxicol Pharmacol. 2007. PMID: 17905499 Review.
Cited by
-
Hughes RE. Hughes RE. Appl Bionics Biomech. 2017;2017:2014961. doi: 10.1155/2017/2014961. Epub 2017 Oct 1. Appl Bionics Biomech. 2017. PMID: 29097902 Free PMC article.
-
Song Y, Jin D, Ou N, Luo Z, Chen G, Chen J, Yang Y, Liu X. Song Y, et al. Front Oncol. 2020 Mar 27;10:394. doi: 10.3389/fonc.2020.00394. eCollection 2020. Front Oncol. 2020. PMID: 32292720 Free PMC article.
-
Predictive risk models for COVID-19 patients using the multi-thresholding meta-algorithm.
Delgado R, Fernández-Peláez F, Pallarés N, Diaz-Brito V, Izquierdo E, Oriol I, Simonetti A, Tebé C, Videla S, Carratalà J. Delgado R, et al. Sci Rep. 2024 Nov 18;14(1):28453. doi: 10.1038/s41598-024-77386-7. Sci Rep. 2024. PMID: 39557887 Free PMC article.
LinkOut - more resources
Full Text Sources