Molecular genetics of axis formation in zebrafish - PubMed
Review
Molecular genetics of axis formation in zebrafish
Alexander F Schier et al. Annu Rev Genet. 2005.
Abstract
The basic vertebrate body plan of the zebrafish embryo is established in the first 10 hours of development. This period is characterized by the formation of the anterior-posterior and dorsal-ventral axes, the development of the three germ layers, the specification of organ progenitors, and the complex morphogenetic movements of cells. During the past 10 years a combination of genetic, embryological, and molecular analyses has provided detailed insights into the mechanisms underlying this process. Maternal determinants control the expression of transcription factors and the location of signaling centers that pattern the blastula and gastrula. Bmp, Nodal, FGF, canonical Wnt, and retinoic acid signals generate positional information that leads to the restricted expression of transcription factors that control cell type specification. Noncanonical Wnt signaling is required for the morphogenetic movements during gastrulation. We review how the coordinated interplay of these molecules determines the fate and movement of embryonic cells.
Similar articles
-
WNT8 and BMP2B co-regulate non-axial mesoderm patterning during zebrafish gastrulation.
Ramel MC, Buckles GR, Baker KD, Lekven AC. Ramel MC, et al. Dev Biol. 2005 Nov 15;287(2):237-48. doi: 10.1016/j.ydbio.2005.08.012. Epub 2005 Oct 10. Dev Biol. 2005. PMID: 16216234
-
Fuentes R, Tajer B, Kobayashi M, Pelliccia JL, Langdon Y, Abrams EW, Mullins MC. Fuentes R, et al. Curr Top Dev Biol. 2020;140:341-389. doi: 10.1016/bs.ctdb.2020.05.002. Epub 2020 Jun 16. Curr Top Dev Biol. 2020. PMID: 32591080 Review.
-
Zebrafish gastrulation: Putting fate in motion.
Pinheiro D, Heisenberg CP. Pinheiro D, et al. Curr Top Dev Biol. 2020;136:343-375. doi: 10.1016/bs.ctdb.2019.10.009. Epub 2019 Dec 27. Curr Top Dev Biol. 2020. PMID: 31959295 Review.
-
Time-dependent patterning of the mesoderm and endoderm by Nodal signals in zebrafish.
Hagos EG, Dougan ST. Hagos EG, et al. BMC Dev Biol. 2007 Mar 28;7:22. doi: 10.1186/1471-213X-7-22. BMC Dev Biol. 2007. PMID: 17391517 Free PMC article.
-
Setting up for gastrulation in zebrafish.
Marlow FL. Marlow FL. Curr Top Dev Biol. 2020;136:33-83. doi: 10.1016/bs.ctdb.2019.08.002. Epub 2019 Sep 3. Curr Top Dev Biol. 2020. PMID: 31959294 Review.
Cited by
-
Mei W, Jin Z, Lai F, Schwend T, Houston DW, King ML, Yang J. Mei W, et al. Development. 2013 Jun;140(11):2334-44. doi: 10.1242/dev.094748. Epub 2013 Apr 24. Development. 2013. PMID: 23615278 Free PMC article.
-
A force balance can explain local and global cell movements during early zebrafish development.
Chai J, Hamilton AL, Krieg M, Buckley CD, Riedel-Kruse IH, Dunn AR. Chai J, et al. Biophys J. 2015 Jul 21;109(2):407-14. doi: 10.1016/j.bpj.2015.04.029. Biophys J. 2015. PMID: 26200877 Free PMC article.
-
Endocytic Adaptor Protein Tollip Inhibits Canonical Wnt Signaling.
Toruń A, Szymańska E, Castanon I, Wolińska-Nizioł L, Bartosik A, Jastrzębski K, Miętkowska M, González-Gaitán M, Miaczynska M. Toruń A, et al. PLoS One. 2015 Jun 25;10(6):e0130818. doi: 10.1371/journal.pone.0130818. eCollection 2015. PLoS One. 2015. PMID: 26110841 Free PMC article.
-
Genetic Deletion of miR-430 Disrupts Maternal-Zygotic Transition and Embryonic Body Plan.
Liu Y, Zhu Z, Ho IHT, Shi Y, Li J, Wang X, Chan MTV, Cheng CHK. Liu Y, et al. Front Genet. 2020 Aug 4;11:853. doi: 10.3389/fgene.2020.00853. eCollection 2020. Front Genet. 2020. PMID: 32849832 Free PMC article.
-
Liu J, Castillo-Hair SM, Du LY, Wang Y, Carte AN, Colomer-Rosell M, Yin C, Seelig G, Schier AF. Liu J, et al. bioRxiv [Preprint]. 2024 Aug 27:2024.08.27.609971. doi: 10.1101/2024.08.27.609971. bioRxiv. 2024. PMID: 39253514 Free PMC article. Preprint.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous