Identification of glucocorticoid-response genes in children with acute lymphoblastic leukemia - PubMed
- ️Sun Jan 01 2006
Comparative Study
. 2006 Mar 1;107(5):2061-9.
doi: 10.1182/blood-2005-07-2853. Epub 2005 Nov 17.
Johannes Rainer, Stefan Riml, Christian Ploner, Simone Jesacher, Clemens Achmüller, Elisabeth Presul, Sergej Skvortsov, Roman Crazzolara, Michael Fiegl, Taneli Raivio, Olli A Jänne, Stephan Geley, Bernhard Meister, Reinhard Kofler
Affiliations
- PMID: 16293608
- DOI: 10.1182/blood-2005-07-2853
Free article
Comparative Study
Identification of glucocorticoid-response genes in children with acute lymphoblastic leukemia
Stefan Schmidt et al. Blood. 2006.
Free article
Erratum in
- Blood. 2007 Apr 15;109(8):3234
Abstract
The ability of glucocorticoids (GCs) to kill lymphoid cells led to their inclusion in essentially all chemotherapy protocols for lymphoid malignancies, particularly childhood acute lymphoblastic leukemia (ALL). GCs mediate apoptosis via their cognate receptor and subsequent alterations in gene expression. Previous investigations, including expression profiling studies with subgenome microarrays in model systems, have led to a number of attractive, but conflicting, hypotheses that have never been tested in a clinical setting. Here, we present a comparative whole-genome expression profiling approach using lymphoblasts (purified at 3 time points) from 13 GC-sensitive children undergoing therapy for ALL. For comparisons, expression profiles were generated from an adult patient with ALL, peripheral blood lymphocytes from GC-exposed healthy donors, GC-sensitive and -resistant ALL cell lines, and mouse thymocytes treated with GCs in vivo and in vitro. This generated an essentially complete list of GC-regulated candidate genes in clinical settings and experimental systems, allowing immediate analysis of any gene for its potential significance to GC-induced apoptosis. Our analysis argued against most of the model-based hypotheses and instead identified a small number of novel candidate genes, including PFKFB2, a key regulator of glucose metabolism; ZBTB16, a putative transcription factor; and SNF1LK, a protein kinase implicated in cell-cycle regulation.
Similar articles
-
Carlet M, Janjetovic K, Rainer J, Schmidt S, Panzer-Grümayer R, Mann G, Prelog M, Meister B, Ploner C, Kofler R. Carlet M, et al. BMC Cancer. 2010 Nov 23;10:638. doi: 10.1186/1471-2407-10-638. BMC Cancer. 2010. PMID: 21092265 Free PMC article.
-
Wasim M, Carlet M, Mansha M, Greil R, Ploner C, Trockenbacher A, Rainer J, Kofler R. Wasim M, et al. J Steroid Biochem Mol Biol. 2010 Jun;120(4-5):218-27. doi: 10.1016/j.jsbmb.2010.04.019. Epub 2010 May 6. J Steroid Biochem Mol Biol. 2010. PMID: 20435142 Free PMC article.
-
Genomewide identification of prednisolone-responsive genes in acute lymphoblastic leukemia cells.
Tissing WJ, den Boer ML, Meijerink JP, Menezes RX, Swagemakers S, van der Spek PJ, Sallan SE, Armstrong SA, Pieters R. Tissing WJ, et al. Blood. 2007 May 1;109(9):3929-35. doi: 10.1182/blood-2006-11-056366. Epub 2007 Jan 11. Blood. 2007. PMID: 17218380 Clinical Trial.
-
Thompson EB, Johnson BH. Thompson EB, et al. Recent Prog Horm Res. 2003;58:175-97. doi: 10.1210/rp.58.1.175. Recent Prog Horm Res. 2003. PMID: 12795419 Review.
-
Resistance to glucocorticoid-induced apoptosis in lymphoblastic leukemia.
Kofler R, Schmidt S, Kofler A, Ausserlechner MJ. Kofler R, et al. J Endocrinol. 2003 Jul;178(1):19-27. doi: 10.1677/joe.0.1780019. J Endocrinol. 2003. PMID: 12844332 Review.
Cited by
-
Heterogeneity in mechanisms of emergent resistance in pediatric T-cell acute lymphoblastic leukemia.
Yadav BD, Samuels AL, Wells JE, Sutton R, Venn NC, Bendak K, Anderson D, Marshall GM, Cole CH, Beesley AH, Kees UR, Lock RB. Yadav BD, et al. Oncotarget. 2016 Sep 13;7(37):58728-42. doi: 10.18632/oncotarget.11233. Oncotarget. 2016. PMID: 27623214 Free PMC article.
-
The Human Blood Metabolome-Transcriptome Interface.
Bartel J, Krumsiek J, Schramm K, Adamski J, Gieger C, Herder C, Carstensen M, Peters A, Rathmann W, Roden M, Strauch K, Suhre K, Kastenmüller G, Prokisch H, Theis FJ. Bartel J, et al. PLoS Genet. 2015 Jun 18;11(6):e1005274. doi: 10.1371/journal.pgen.1005274. eCollection 2015 Jun. PLoS Genet. 2015. PMID: 26086077 Free PMC article.
-
Kośmider K, Karska K, Kozakiewicz A, Lejman M, Zawitkowska J. Kośmider K, et al. Int J Mol Sci. 2022 Mar 30;23(7):3795. doi: 10.3390/ijms23073795. Int J Mol Sci. 2022. PMID: 35409154 Free PMC article. Review.
-
Beesley AH, Rampellini JL, Palmer ML, Heng JY, Samuels AL, Firth MJ, Ford J, Kees UR. Beesley AH, et al. Mol Cancer. 2010 Oct 28;9:284. doi: 10.1186/1476-4598-9-284. Mol Cancer. 2010. PMID: 20979663 Free PMC article.
-
HtrA serine proteases as potential therapeutic targets in cancer.
Chien J, Campioni M, Shridhar V, Baldi A. Chien J, et al. Curr Cancer Drug Targets. 2009 Jun;9(4):451-68. doi: 10.2174/156800909788486704. Curr Cancer Drug Targets. 2009. PMID: 19519315 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous