Identification of large-scale human-specific copy number differences by inter-species array comparative genomic hybridization - PubMed
Comparative Study
. 2006 Mar;119(1-2):185-98.
doi: 10.1007/s00439-005-0130-9. Epub 2006 Jan 5.
Lluis Armengol, Werner Schempp, Jeffrey Conroy, Norma Nowak, Stefan Müller, David N Cooper, Xavier Estivill, Wolfgang Enard, Justyna M Szamalek, Horst Hameister, Hildegard Kehrer-Sawatzki
Affiliations
- PMID: 16395594
- DOI: 10.1007/s00439-005-0130-9
Comparative Study
Identification of large-scale human-specific copy number differences by inter-species array comparative genomic hybridization
Violaine Goidts et al. Hum Genet. 2006 Mar.
Abstract
Copy number differences (CNDs), and the concomitant differences in gene number, have contributed significantly to the genomic divergence between humans and other primates. To assess its relative importance, the genomes of human, common chimpanzee, bonobo, gorilla, orangutan and macaque were compared by comparative genomic hybridization using a high-resolution human BAC array (aCGH). In an attempt to avoid potential interference from frequent intra-species polymorphism, pooled DNA samples were used from each species. A total of 322 sites of large-scale inter-species CND were identified. Most CNDs were lineage-specific but frequencies differed considerably between the lineages; the highest CND frequency among hominoids was observed in gorilla. The conserved nature of the orangutan genome has already been noted by karyotypic studies and our findings suggest that this degree of conservation may extend to the sub-microscopic level. Of the 322 CND sites identified, 14 human lineage-specific gains were observed. Most of these human-specific copy number gains span regions previously identified as segmental duplications (SDs) and our study demonstrates that SDs are major sites of CND between the genomes of humans and other primates. Four of the human-specific CNDs detected by aCGH map close to the breakpoints of human-specific karyotypic changes [e.g., the human-specific inversion of chromosome 1 and the polymorphic inversion inv(2)(p11.2q13)], suggesting that human-specific duplications may have predisposed to chromosomal rearrangement. The association of human-specific copy number gains with chromosomal breakpoints emphasizes their potential importance in mediating karyotypic evolution as well as in promoting human genomic diversity.
Similar articles
-
Locke DP, Segraves R, Carbone L, Archidiacono N, Albertson DG, Pinkel D, Eichler EE. Locke DP, et al. Genome Res. 2003 Mar;13(3):347-57. doi: 10.1101/gr.1003303. Genome Res. 2003. PMID: 12618365 Free PMC article.
-
Armengol G, Knuutila S, Lozano JJ, Madrigal I, Caballín MR. Armengol G, et al. Genomics. 2010 Apr;95(4):203-9. doi: 10.1016/j.ygeno.2010.02.003. Epub 2010 Feb 11. Genomics. 2010. PMID: 20153417
-
Goidts V, Szamalek JM, de Jong PJ, Cooper DN, Chuzhanova N, Hameister H, Kehrer-Sawatzki H. Goidts V, et al. Genome Res. 2005 Sep;15(9):1232-42. doi: 10.1101/gr.3732505. Genome Res. 2005. PMID: 16140991 Free PMC article.
-
The phylogeny of the hominoid primates, as indicated by DNA-DNA hybridization.
Sibley CG, Ahlquist JE. Sibley CG, et al. J Mol Evol. 1984;20(1):2-15. doi: 10.1007/BF02101980. J Mol Evol. 1984. PMID: 6429338 Review.
-
Structural divergence between the human and chimpanzee genomes.
Kehrer-Sawatzki H, Cooper DN. Kehrer-Sawatzki H, et al. Hum Genet. 2007 Feb;120(6):759-78. doi: 10.1007/s00439-006-0270-6. Epub 2006 Oct 26. Hum Genet. 2007. PMID: 17066299 Review.
Cited by
-
Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases.
Lu X, Shaw CA, Patel A, Li J, Cooper ML, Wells WR, Sullivan CM, Sahoo T, Yatsenko SA, Bacino CA, Stankiewicz P, Ou Z, Chinault AC, Beaudet AL, Lupski JR, Cheung SW, Ward PA. Lu X, et al. PLoS One. 2007 Mar 28;2(3):e327. doi: 10.1371/journal.pone.0000327. PLoS One. 2007. PMID: 17389918 Free PMC article.
-
Copy number variation and evolution in humans and chimpanzees.
Perry GH, Yang F, Marques-Bonet T, Murphy C, Fitzgerald T, Lee AS, Hyland C, Stone AC, Hurles ME, Tyler-Smith C, Eichler EE, Carter NP, Lee C, Redon R. Perry GH, et al. Genome Res. 2008 Nov;18(11):1698-710. doi: 10.1101/gr.082016.108. Epub 2008 Sep 4. Genome Res. 2008. PMID: 18775914 Free PMC article.
-
Wall JD. Wall JD. ILAR J. 2013;54(2):82-90. doi: 10.1093/ilar/ilt048. ILAR J. 2013. PMID: 24174434 Free PMC article. Review.
-
Evolutionary forces shape the human RFPL1,2,3 genes toward a role in neocortex development.
Bonnefont J, Nikolaev SI, Perrier AL, Guo S, Cartier L, Sorce S, Laforge T, Aubry L, Khaitovich P, Peschanski M, Antonarakis SE, Krause KH. Bonnefont J, et al. Am J Hum Genet. 2008 Aug;83(2):208-18. doi: 10.1016/j.ajhg.2008.07.007. Epub 2008 Jul 24. Am J Hum Genet. 2008. PMID: 18656177 Free PMC article.
-
Polymorphic micro-inversions contribute to the genomic variability of humans and chimpanzees.
Szamalek JM, Cooper DN, Schempp W, Minich P, Kohn M, Hoegel J, Goidts V, Hameister H, Kehrer-Sawatzki H. Szamalek JM, et al. Hum Genet. 2006 Mar;119(1-2):103-12. doi: 10.1007/s00439-005-0117-6. Epub 2005 Dec 16. Hum Genet. 2006. PMID: 16362346
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources