Plasmonics: merging photonics and electronics at nanoscale dimensions - PubMed
- ️Sun Jan 01 2006
. 2006 Jan 13;311(5758):189-93.
doi: 10.1126/science.1114849.
Affiliations
- PMID: 16410515
- DOI: 10.1126/science.1114849
Plasmonics: merging photonics and electronics at nanoscale dimensions
Ekmel Ozbay. Science. 2006.
Abstract
Electronic circuits provide us with the ability to control the transport and storage of electrons. However, the performance of electronic circuits is now becoming rather limited when digital information needs to be sent from one point to another. Photonics offers an effective solution to this problem by implementing optical communication systems based on optical fibers and photonic circuits. Unfortunately, the micrometer-scale bulky components of photonics have limited the integration of these components into electronic chips, which are now measured in nanometers. Surface plasmon-based circuits, which merge electronics and photonics at the nanoscale, may offer a solution to this size-compatibility problem. Here we review the current status and future prospects of plasmonics in various applications including plasmonic chips, light generation, and nanolithography.
Similar articles
-
Integration of photonic and silver nanowire plasmonic waveguides.
Pyayt AL, Wiley B, Xia Y, Chen A, Dalton L. Pyayt AL, et al. Nat Nanotechnol. 2008 Nov;3(11):660-5. doi: 10.1038/nnano.2008.281. Epub 2008 Oct 5. Nat Nanotechnol. 2008. PMID: 18989331
-
Leroux YR, Lacroix JC, Chane-Ching KI, Fave C, Félidj N, Lévi G, Aubard J, Krenn JR, Hohenau A. Leroux YR, et al. J Am Chem Soc. 2005 Nov 23;127(46):16022-3. doi: 10.1021/ja054915v. J Am Chem Soc. 2005. PMID: 16287278
-
Surface plasmon polariton analogue to Young's double-slit experiment.
Zia R, Brongersma ML. Zia R, et al. Nat Nanotechnol. 2007 Jul;2(7):426-9. doi: 10.1038/nnano.2007.185. Epub 2007 Jul 1. Nat Nanotechnol. 2007. PMID: 18654327
-
Optical Processes behind Plasmonic Applications.
Babicheva VE. Babicheva VE. Nanomaterials (Basel). 2023 Apr 3;13(7):1270. doi: 10.3390/nano13071270. Nanomaterials (Basel). 2023. PMID: 37049363 Free PMC article. Review.
-
Optical sensing systems for microfluidic devices: a review.
Kuswandi B, Nuriman, Huskens J, Verboom W. Kuswandi B, et al. Anal Chim Acta. 2007 Oct 10;601(2):141-55. doi: 10.1016/j.aca.2007.08.046. Epub 2007 Sep 1. Anal Chim Acta. 2007. PMID: 17920386 Review.
Cited by
-
Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal-Semiconductor Nanojunctions.
Sistani M, Bartmann MG, Güsken NA, Oulton RF, Keshmiri H, Luong MA, Momtaz ZS, Den Hertog MI, Lugstein A. Sistani M, et al. ACS Photonics. 2020 Jul 15;7(7):1642-1648. doi: 10.1021/acsphotonics.0c00557. Epub 2020 Jun 30. ACS Photonics. 2020. PMID: 32685608 Free PMC article.
-
High-throughput patterning of photonic structures with tunable periodicity.
Kempa TJ, Bediako DK, Kim SK, Park HG, Nocera DG. Kempa TJ, et al. Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5309-13. doi: 10.1073/pnas.1504280112. Epub 2015 Apr 13. Proc Natl Acad Sci U S A. 2015. PMID: 25870280 Free PMC article.
-
Few-Cycle Surface Plasmon Polaritons.
Komatsu K, Pápa Z, Jauk T, Bernecker F, Tóth L, Lackner F, Ernst WE, Ditlbacher H, Krenn JR, Ossiander M, Dombi P, Schultze M. Komatsu K, et al. Nano Lett. 2024 Feb 28;24(8):2637-2642. doi: 10.1021/acs.nanolett.3c04991. Epub 2024 Feb 12. Nano Lett. 2024. PMID: 38345784 Free PMC article.
-
Infrared Plasmonic Sensing with Anisotropic Two-Dimensional Material Borophene.
Zhang J, Zhang Z, Song X, Zhang H, Yang J. Zhang J, et al. Nanomaterials (Basel). 2021 Apr 29;11(5):1165. doi: 10.3390/nano11051165. Nanomaterials (Basel). 2021. PMID: 33946878 Free PMC article.
-
Wang T, Du W, Tomczak N, Wang L, Nijhuis CA. Wang T, et al. Adv Sci (Weinh). 2019 Aug 22;6(20):1900390. doi: 10.1002/advs.201900390. eCollection 2019 Oct 16. Adv Sci (Weinh). 2019. PMID: 31637155 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources